——) M
s= REGAL e compllsh

technolog simplicity@work™

API Guide to Integrating and Using the

DevConnect APl Web Service

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Record of Reviews and Versions

VERSION ID DATE AUTHOR DESCRIPTION

4.0.0 10/15/13 | Dev Team Added Customer Tokenization Service

This document is the property of Regal Technologies, LLC and E-Complish, LLC and contains proprietary unpublished information, designs,
algorithms, protocols, innovations, and concepts that are protected under copyright and trade secret laws of the United States. The information
contained is confidential and is to be protected from any unauthorized distribution. Reproduction of this document by any means, including
photocopying or translation into other languages, is prohibited. While reasonable efforts have been taken in preparation of this document to
assure its accuracy, Regal Technologies, LLC assumes no liability resulting from any errors or omissions in this document, or from the use of the
information herein. Copyright © Regal Technologies, LLC and E-Complish, LLC - All rights reserved.

Disclaimer of Warranties and Limitations of Liabilities

Regal Technologies/E-Complish has taken due care in preparing this document; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Regal Technologies/E-Complish purchase, lease, or license agreement by which the product was
acquired, nor increase in any way Regal Technologies/E-Complish’s liability to the customer. In no event shall Regal Technologies/E-Complish be
liable for incidental or consequential damages because of information contained in this document or any related materials.

Software Notice

All Regal Technologies/E-Complish software products are licensed to customers in accordance with the terms and conditions of
Regal Technologies/E-Complish’s standard software license. No title or ownership of Regal Technologies/E-Complish software is transferred,
and any use of the software beyond the terms of the aforesaid license, without the written authorization of Regal Technologies or E-Complish,
is prohibited.

General Notice

The information and specifications in this document are subject to change without notice. The information on this document is protected by
copyright. Except as specifically permitted, no portion of this document may be distributed or reproduced by any means, or in any form,
without Regal Technologies’ or E-Complish’s prior written permission.

All Regal Technologies/E-Complish products and publications are commercial in nature. The software, publications, and software
documentation available on this web site are "Commercial Items", as that term is defined in 48 C.F.R.§2.101, consisting of "Commercial
Computer Software" and "Commercial Computer Software Documentation", as such terms are defined in 48 C.F.R. §252.227-7014(a)(5) and 48
C.F.R. §252.227-7014(a)(1), and used in 48 C.F.R.?12.212 and 48 C.F.R. 227.7202, as applicable. Pursuant to 48 C.F.R. §12.212, 48
C.F.R.§252.227-7015, 48 C.F.R. §227.7202 through 227.7202-4, 48 C.F.R. §52.227-19, and other relevant sections of the Code of Federal
Regulations, as applicable, Regal Technologies/E-Complish’s publications, commercial computer software, and commercial computer software
documentation are distributed and licensed to United States Government end users with only those rights as granted to all other end users,
according to the terms and conditions contained in the license agreements that accompany the products and software documentation, and the
terms and conditions herein.

Regal Technologies, LLC E-Complish, LLC

Postal Box 670 Postal Box 926

Severna Park, Maryland 21146-0670 USA New Market, Maryland 21774-0926 USA
Telephone (410) 975-0688 Telephone (301) 865-7570

Toll Free (866) 766-1066 Toll Free (888) 847-7744

Fax (240) 331-9166 Fax (240) 331-9188

www.regaltek.com www.e-complish.com

Copyright © Regal Technologies and E-Complish | Guide to DevConnect AP [§]

Table of Contents

Table of Contents 3
General Overview 5
Purpose of the API 5
Web Service Location 5
Processing Transactions 6
Credit Cards 6
Processing a Credit Card Transaction 6
Voiding a Credit Card Transaction 10
Settling Credit Card Transactions 12
Refunding a Credit Card Payment 13
Debit Cards (Pinless) 15
Processing a Transaction 15
Voiding a Debit Card Transaction 20
Settling Debit Card Transactions 22
Refunding a Debit Card Payment 22
ACH / Online Checks 24
Processing an ACH Debit Transaction (ACH Debit) 24
Sending an ACH Credit Transaction (ACH Credit) 28
Updating an ACH Transaction 32
Deleting an ACH Transaction 35
Settling ACH Transactions 37
Refunding an ACH Payment 39
Wire Transfers 41
Posting a Wire Transfer 41
Settling Wire Transfers 44
Scheduling Transactions 45
Future Transactions 45
Inserting a Future Transaction 45
Updating a Future Transaction 46
Cancelling a Future Transaction 49
Recurring Payment Plans 51
Creating a RecurPay Plan 51
Updating a RecurPay Plan 55
Cancelling a RecurPay Plan 57
Testing RecurPay 59
Customer Tokenization 60
Storing (or Tokenizing) a Customer 60
Updating a Tokenized Customer 63
Cancelling a Tokenized Customer 65
Performing Transactions on Stored Customers 67
Testing Tokenization 70

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Querying and Reporting 71

Querying Transactions 71
Retrieving a Single Transaction 71
Retrieving a Group of Transactions 73

Integrating with SOAP 78

.NET Languages 78

Java / Sun 78

PHP 78

PERL 78

Python 78

Additional Resources 79

Appendices 80

Appendix A - Command Reference 80

Appendix B - Request Fields in Alphabetical Order 80

Appendix C - Response Fields in Alphabetical Order 84

Appendix D - Payment Statuses 85

Appendix E - Configuration Requirements for API Functions 86

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API -

General Overview

Purpose of the API

The E-Complish/Regal Technologies DevConnect system is a web service designed to run 24 hours a day 7 days a
week listening for SOAP requests coming to it. Its purpose is to provide API access to merchants wishing to
securely process ACH, Credit Card, Debit Card and Wire transactions all from a single endpoint and simple web
service call.

Web Service Location

The web service can be found at the following URL:
https://regaltek.secured-server.biz/RegalPayment/services/ProcessRequest

and the WSDL is located here:
https://regaltek.secured-server.biz/RegalPayment/services/ProcessRequest?wsdl

The system will accept a standard SOAP request and return a SOAP response. To keep things simple and minimize
the amount of coding the client must do, there is only one ‘operation’ built into the web service. The operation is
called ‘processCommand’. Through this method several different commands and values can be sent to perform the
required functionality.

Please review the sections below for more information on which types of processes can be executed.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Processing Transactions

Credit Cards

Processing a Credit Card Transaction

Request Fields

The most common and basic function of the APl is to process a single one-time credit card payment. The entry of a

credit card payment is essentially an ‘Authorization” which will later get automatically settled at the end of the

business day (timing can be adjusted, please ask your sales representative). To perform a single credit card

payment, the following fields are recommended to post in the API request data.

Field

merchantCode
command

test

paymentMethod

paymentSubMethod

creditCardNumber

expireMonth

expireYear

cvvCode

creditCardToken

paymentAmount

serviceFee

Value

Assigned to you by Regal
TRANSACT

Either TRUE or not. Anything that is
sent other than TRUE is interpreted
as a non-test transaction.

CREDITCARD

One of the following: Visa,
MasterCard, Amex, Discover,
Unknown

The customer’s card number

The customer’s card expiration
month

The customer’s card expiration year

The cvv2 aka security code from the
back of the card

A previously stored tokenization
value obtained outside the API
process. (For USAePay clients only)

The amount to charge, ex: 1.01

An additional service fee to charge if
you like, ex: 0.25

Type
49 CHARs
32 CHARs

8 CHARs

32 CHARs

16 CHARs

16 CHARs

2 CHARs

4 CHARs

3-4 CHARs

32 CHARs

12 CHARs

12 CHARs

Notes
Required
Required

Optional — flags to the
system if this is a test
transaction or not

Required

Required

Required

Required

Required

Optional, but highly
recommended

This can be passed in
instead of the
creditCardNumber,
expireMonth and
expireYear.

Required

Optional — will be added
to the paymentAmount
before processing

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API -

billFirstName
billLastName

billCompany

billAddress

bill City
billState

billZip

billPhone

billEmail

The customer’s first name

The customer’s last name

If the customer is a company and not

an individual, you can send the
company name here

The customer’s house number and
street, ex: 123 Test St

The customer’s city, ex: Springfield
The two digit state abbreviation

The 5-10 digit zip code for the
customer

The customer’s 10 digit phone
number

The customer’s email address

25 CHARs

25 CHARs

50 CHARs

50 CHARs

25 CHARs

2 CHARs

10 CHARs

10 CHARs

50 CHARs

Required
Required

Optional. This can be
used instead of the
billFirstName
billLastName but at least
one or the other is
required

Required

Required
Required

Optional but highly
recommended

Optional

Optional

Other informational fields may be sent in addition to the above. Please see Appendix B (Request Fields) for a

listing of all fields in the event you would like to send more customer information for tracking and reporting

purposes.

Response Fields

The following response fields are what you may expect from an attempt to process a payment.

Field

command

commandResponseCode

commandResponseText

Value Type

The original request
command this response
is referring to.

The response to
attempting the
‘command’ 1 for
successful, 2 for declined,
3 for error

The text describing the
commandResponseCode

1NUM

32 CHARs

120 CHARs

Notes

Echoed from request —
This is the command that
was attempted

This is the overall
response to the request
‘command’ field. Do not
confuse this with the
paymentResponseCode

A description of the
declined message or error
that occurred by
attempting to process the

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

paymentMethod

paymentAmount

paymentResponseCode

paymentResponseText

paymentTransactionID

approvalCode

trackingNumber

An echo of the
paymentMethod sent in
the request

The amount attempted
to charge. Ex: 1.01

The payment ‘response
code’ returned from the
transaction. In general
it’s 1 for successful, 2 for
declined, 3 for error

The ‘response text’
returned from
attempting a transaction

The transaction ID as
provided by the back end
gateway or processor.

The 5-6 digit approval
code returned from the
back end gateway or
processor.

The RegalTek unique
tracking number for the
transaction.

32 CHARs

12 CHARs

1NUM

120 CHARs

16 CHARs

6 CHARs

16 CHARs

request ‘command’.

This varies by type of
operation you are
processing

This is echoed from the
request

This is the value that
indicates if a transaction
was approved or declined

The description of the
paymentResponseCode.
This will likely be
‘Transaction Inserted
Successfully’ or just
‘Success’.

This is a unique ID with a 1
to 1 relationship per
transaction attempt.

This is not unique but is
issued and may be used to
verify payment with the
processor

This is a unique ID with a 1
to 1 relationship per
transaction attempt.

Additionally other fields may be returned depending on what was sent in for the request, please see Appendix C

(Response Fields) for a listing of all possible return values.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API -

Example SOAP Request

The following is an example raw SOAP request for an attempt to post a credit card payment to the API. Please use
the built in or third party SOAP libraries for your programming language to post payments. The following is only
for illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:test>TRUE</proc:test>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>TRANSACT</proc:command>
<proc:paymentMethod>CREDITCARD</proc:paymentMethod>
<proc:paymentSubMethod>Visa</proc:paymentSubMethod>
<proc:creditCardNumber>4242424242424242</proc:creditCardNumber>
<proc:expireMonth>01</proc:expireMonth>
<proc:expireYear>2016</proc:expireYear>
<proc:cvvCode>123</proc:cvvCode>
<proc:paymentAmount>1.01</proc:paymentAmount>
<proc:serviceFee></proc:serviceFee>
<proc:billFirstName>test</proc:billFirstName>
<proc:billLastName>test</proc:billLastName>
<proc:billAddress>123 test st</proc:billAddress>
<proc:billCity>Springfield</proc:billCity>
<proc:billState>CA</proc:billState>
<proc:billzip>90210</proc:billzip>
<proc:billPhone>444-555-6666</proc:billPhone>
<proc:billEmail>support@e-complish.com</proc:billEmail>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

instance">

<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<approvalCode>000000</approvalCode>
<command>TRANSACT</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed transaction.
</commandResponseText>
<paymentMethod>CREDITCARD</paymentMethod>
<paymentAmount>1.01</paymentAmount>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText> (TESTMODE) This transaction has been approved.
</paymentResponseText>
<paymentTransactionID>0</paymentTransactionID>
<trackingNumber>1280892202844</trackingNumber>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Testing

To perform a test credit card payment, simply pass in the field ‘test’ and set the value to ‘TRUE’ and use one of the
following scenarios listed below.

Creating an APPROVED test credit card payment:
Use a credit card number that passes the Luhn/Mod10 check. Good examples are:
4242424242424242 for Visa
5454545454545454 for MasterCard

Creating a DECLINED test credit card payment:
Use a card number that does NOT pass the Luhn/Mod10 check. Good examples are:
4242424242424241 for Visa

5454545454545453 for MasterCard

** Note: Test payments DO NOT get stored in the database and they do not get sent to the processor. For testing
the Query and Reporting functionality, you must have a production token in live mode.

Voiding a Credit Card Transaction

Request Fields

After a credit card transaction has been authorized or approved, it remains in that state until the end of day
settlement occurs. Until that happens, you have an opportunity to Void the transaction to remove it from the
system without it ever actually charging the customer’s card. To process a Void on a credit card transaction, the
following fields are recommended for the request.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command VOID 32 CHARs Required
paymentMethod CREDITCARD 32 CHARs Required
trackingNumber A valid tracking number from a 16 CHARs Required

previously authorized payment.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Response Fields

The following response fields are what you may expect from an attempt to void a payment.

Field

command

commandResponseCode

commandResponseText

paymentMethod

trackingNumber

paymentResponseCode

paymentResponseText

Value Type

The original request 32 CHARs
command this response is
referring to.

The response to attempting 1 NUM
the ‘command’ 1 for
successful, 2 for declined, 3

for error

The text describing the 120 CHARs
commandResponseCode

An echo of the 32 CHARs

paymentMethod sent in
the request

Echoed from the request 16 CHARs

The payment ‘response 1NUM
code’ returned from the

transaction. In general it’s

1 for successful, 2 for

declined, 3 for error

The ‘response text’ 120 CHARs
returned from attempting
to void a payment

Notes

Echoed from request — This is the
command that was attempted

This is the overall response to the
request ‘command’ field. Do not
confuse this with the
paymentResponseCode

A description of the declined
message or error that occurred by
attempting to process the request
‘command’.

This varies by type of operation you
are processing

This is a unique ID withal1to 1
relationship per transaction attempt.

This is the value that indicates if a
void attempt was approved or
declined.

The description of the
paymentResponseCode. These will
likely be ‘Transaction voided
successfully’ or the reason the
transaction could not be voided,
most often because it already
settled.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Example SOAP Request

The following is an example raw SOAP request for an attempt to void a credit card payment. Please use the built
in or third party SOAP libraries for your programming language to post payments. The following is only for
illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>VOID</proc:command>
<proc:paymentMethod>CREDITCARD</proc:paymentMethod>
<proc:trackingNumber>1332342565264</proc:trackingNumber>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>VOID</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed void.
</commandResponseText>
<paymentMethod>CREDITCARD</paymentMethod>
<trackingNumber>1332342565264</trackingNumber>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText>Transaction voided successfully.
</paymentResponseText>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Settling Credit Card Transactions

Credit card transactions are automatically batched and settled at the end of the business day. By default the
settlement time is 10PM (Local Time), however you may request from your merchant support manager or sales
representative to have a custom time that transactions will settle. Transactions may be ‘Voided’ (i.e. removed from
the system without charging the customer) up until the settlement time, after which, the only way to reverse the
payment would be to process a ‘Refund’.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl)

Refunding a Credit Card Payment

Request Fields

When a payment has settled during the regular automated end of day batch closing that means the payment is
now closed to changes and the funds transfer process is now beginning. The payment can no longer be voided and
if it becomes necessary to reverse the payment for whatever reason (perhaps a return of merchandise), the
payment will need to be refunded. To process a Refund on a credit card payment, the following fields are
recommended for the request to the API.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command REFUND 32 CHARs Required
paymentMethod CREDITCARD 32 CHARs Required
trackingNumber A valid tracking number from a 16 CHARs Required

previously settled payment.

Response Fields

The following response fields are what you may expect from an attempt to refund a credit card.

Field Value Type Notes
command The original request 32 CHARs Echoed from request — This is the
command this response is command that was attempted

referring to.

commandResponseCode The response to attempting 1 NUM This is the overall response to the
the ‘command’ 1 for request ‘command’ field. Do not
successful, 2 for declined, 3 confuse this with the
for error paymentResponseCode
commandResponseText The text describing the 120 CHARs A description of the declined
commandResponseCode message or error that occurred by
attempting to process the request
‘command’.
paymentMethod An echo of the 32 CHARs This varies by type of operation you
paymentMethod sent in are processing
the request
trackingNumber Echoed from the request 16 CHARs This is a unique ID witha1to 1

relationship per transaction attempt.

paymentResponseCode The payment ‘response 1NUM This is the value that indicates if a
code’ returned from the refund attempt was approved or

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

transaction. In general it’s declined.
1 for successful, 2 for
declined, 3 for error

paymentResponseText The ‘response text’ 120 CHARs The description of the
returned from attempting paymentResponseCode. This will
to refund a payment likely be ‘Transaction refunded

successfully’ or the reason the
transaction could not be refunded,
most often because it has already
been refunded, or has not yet
settled.

Example SOAP Request

The following is an example raw SOAP request for an attempt to refund a credit card payment. Please use the built
in or third party SOAP libraries for your programming language to post payments. The following is only for
illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>REFUND</proc:command>
<proc:paymentMethod>CREDITCARD</proc:paymentMethod>
<proc:trackingNumber>1332342565264</proc:trackingNumber>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl BVl

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>REFUND</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed refund.
</commandResponseText>
<paymentMethod>CREDITCARD</paymentMethod>
<trackingNumber>1332342565264</trackingNumber>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText>Transaction refunded successfully.
</paymentResponseText>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Debit Cards (Pinless)

Processing a Transaction

Request Fields

Debit Cards (Pinless) are very similar to Credit Cards with the slight adjustment to a few fields. This section details
how to send a Debit Card transaction to the API. The following fields are the ones recommended to post.

Field Value Type Notes
merchantCode Assigned to you by Regal 49 CHARs Required
command TRANSACT 32 CHARs Required
test Either TRUE or not. Anything thatis 8 CHARs Optional — flags to the
sent other than TRUE is interpreted system if this is a test
as a non-test transaction. transaction or not
paymentMethod DEBITCARD 32 CHARs Required
paymentSubMethod Should be sent as: 16 CHARs Required
Pinless Debit
debitCardNumber The customer’s card number 16 CHARs Required
expireMonth The customer’s card expiration 2 CHARs Required
month
expireYear The customer’s card expiration year 4 CHARs Required
cvvCode The cvv2 aka security code from the 3-4 CHARs Optional, but highly
back of the card recommended

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl BN

debitCardToken A previously stored tokenization 32 CHARs This can be passed in

value obtained outside the API instead of the
process. (For USAePay clients only) debitCardNumber,
expireMonth and
expireYear.
paymentAmount The amount to charge, ex: 1.01 12 CHARs Required
serviceFee An additional service fee to charge if 12 CHARs Optional — will be added
you like, ex: 0.25 to the paymentAmount

before processing

billFirstName The customer’s first name 25 CHARs Required

billLastName The customer’s last name 25 CHARs Required

billCompany If the customer is a company and not 50 CHARs Optional. This can be
an individual, you can send the used instead of the
company name here billFirstName

billLastName but at least
one or the other is

required

billAddress The customer’s house number and 50 CHARs Required

street, ex: 123 Test St
billCity The customer’s city, ex: Springfield 25 CHARs Required
billState The two digit state abbreviation 2 CHARs Required
billzip The 5-10 digit zip code for the 10 CHARs Optional but highly

customer recommended
billPhone The customer’s 10 digit phone 10 CHARs Optional

number
billEmail The customer’s email address 50 CHARs Optional

Other informational fields may be sent in addition to the above. Please see Appendix B (Request Fields) for a listing
of all fields in the event you would like to send more customer information for tracking and reporting purposes.

Response Fields

The following response fields are what you may expect from an attempt to process a debit card.

Field Value Type Notes

command The original request 32 CHARs Echoed from request —
command this response This is the command that
is referring to. was attempted

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

commandResponseCode

commandResponseText

paymentMethod

paymentAmount

paymentResponseCode

paymentResponseText

paymentTransactionID

approvalCode

trackingNumber

The response to
attempting the
‘command’ 1 for
successful, 2 for declined,
3 for error

The text describing the
commandResponseCode

An echo of the
paymentMethod sent in
the request

The amount attempted
to charge. Ex: 1.01

The payment ‘response
code’ returned from the
transaction. In general
it’s 1 for successful, 2 for
declined, 3 for error

The ‘response text’
returned from
attempting a transaction

The transaction ID as
provided by the back end
gateway or processor.

The 5-6 digit approval
code returned from the
back end gateway or
processor.

The RegalTek unique
tracking number for the
payment.

1NUM

120 CHARs

32 CHARs

12 CHARs

1NUM

120 CHARs

16 CHARs

6 CHARs

16 CHARs

This is the overall
response to the request
‘command’ field. Do not
confuse this with the
paymentResponseCode

A description of the
declined message or error
that occurred during the
attempt to process the
request ‘command’.

This varies by type of
operation you are
processing

This is echoed from the
request

This is the value that
indicates if a payment was
approved or declined

The description of the
paymentResponseCode.
This will likely be
‘Transaction Inserted
Successfully’ or just
‘Success’.

This is a unique ID with a 1
to 1 relationship per
transaction attempt.

This is not unique but is
issued and may be used to
verify payment with the
processor

This is a unique ID with a 1
to 1 relationship per
transaction attempt.

Additionally other fields may be returned depending on what was sent in for the request, please see Appendix C

(Response Fields) for a listing of all possible return values.

Example SOAP Request

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

The following is an example raw SOAP request for an attempt to post a debit card payment to the API. Please use
the built in or third party SOAP libraries for your programming language to post payments. The following is only
for illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:test>TRUE</proc:test>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>TRANSACT</proc:command>
<proc:paymentMethod>DEBITCARD</proc:paymentMethod>
<proc:paymentSubMethod>Pinless Debit</proc:paymentSubMethod>
<proc:debitCardNumber>4242424242424242</proc:debitCardNumber>
<proc:expireMonth>01</proc:expireMonth>
<proc:expireYear>2016</proc:expireYear>
<proc:paymentAmount>1.01</proc:paymentAmount>
<proc:serviceFee></proc:serviceFee>
<proc:billFirstName>test</proc:billFirstName>
<proc:billLastName>test</proc:billLastName>
<proc:billAddress>123 test st</proc:billAddress>
<proc:billCity>Springfield</proc:billCity>
<proc:billState>CA</proc:billState>
<proc:billzip>90210</proc:billzip>
<proc:billPhone>444-555-6666</proc:billPhone>
<proc:billEmail>support@e-complish.com</proc:billEmail>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

instance">

<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<approvalCode>000000</approvalCode>
<command>TRANSACT</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed transaction.
</commandResponseText>
<paymentMethod>DEBITCARD</paymentMethod>
<paymentAmount>1.01</paymentAmount>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText>(TESTMODE) This transaction has been approved.
</paymentResponseText>
<paymentTransactionID>0</paymentTransactionID>
<trackingNumber>1280892202845</trackingNumber>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl BN

Testing

To perform a test debit card payment, simply pass in the field ‘test’ and set the value to ‘TRUE’ and use one of the
following scenarios listed below.

Creating an APPROVED test debit card payment:
Use a debit card number that passes the Luhn/Mod10 check for credit cards. A good example is:
4242424242424242

Creating a DECLINED test debit card payment:
Use a debit card number that does NOT pass the Luhn/Mod10 check. A good example is:
4242424242424241

** Note: Test payments DO NOT get stored in the database and they do not get sent to the processor. For testing
the Query and Reporting functionality, you must have a production token in live mode.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Voiding a Debit Card Transaction

Request Fields

After a transaction has been approved, it remains in that state until the end of day settlement occurs. Until that
happens, you have an opportunity to Void the transaction to remove it from the system without it ever actually
debiting the customer’s card. To process a Void on a debit card transaction, the following fields are recommended
for the request.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command VOID 32 CHARs Required
paymentMethod DEBITCARD 32 CHARs Required
trackingNumber A valid tracking number from a 16 CHARs Required

previously authorized payment.

Response Fields

The following response fields are what you may expect from an attempt to void a payment.

Field Value Type Notes
command The original request 32 CHARs Echoed from request — This is the
command this response is command that was attempted

referring to.

commandResponseCode The response to attempting 1 NUM This is the overall response to the
the ‘command’ 1 for request ‘command’ field. Do not
successful, 2 for declined, 3 confuse this with the
for error paymentResponseCode
commandResponseText The text describing the 120 CHARs A description of the declined
commandResponseCode message or error that occurred by
attempting to process the request
‘command’.
paymentMethod An echo of the 32 CHARs This varies by type of operation you
paymentMethod sent in are processing
the request
trackingNumber Echoed from the request 16 CHARs This is a unique ID withal1to 1

relationship per transaction attempt.

paymentResponseCode The payment ‘response 1NUM This is the value that indicates if a
code’ returned from the void attempt was approved or
transaction. In general it’s declined.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

1 for successful, 2 for
declined, 3 for error

paymentResponseText The ‘response text’ 120 CHARs The description of the
returned from attempting paymentResponseCode. These will
to void a payment likely be ‘Transaction voided

successfully’ or the reason the
transaction could not be voided,
most often because it already
settled.

Example SOAP Request

The following is an example raw SOAP request for an attempt to void a debit card payment. Please use the built in
or third party SOAP libraries for your programming language to post payments. The following is only for illustration
and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>VOID</proc:command>
<proc:paymentMethod>DEBITCARD</proc:paymentMethod>
<proc:trackingNumber>1332342565265</proc:trackingNumber>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>VOID</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed void.
</commandResponseText>
<paymentMethod>DEBITCARD</paymentMethod>
<trackingNumber>1332342565265</trackingNumber>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText>Transaction voided successfully.
</paymentResponseText>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl ByXk

Settling Debit Card Transactions

Debit card transactions, just like credit card transactions, are automatically batched and settled at the end of the
business day. By default the settlement time is 10PM (Local Time), however you may request from your merchant
support manager or sales representative to have a custom time that payments will settle. Transactions may be
‘Voided’ (i.e. removed from the system without charging the customer) up until the settlement time, after which,
the only way to reverse the payment would be to process a ‘Refund’.

Refunding a Debit Card Payment

Request Fields

When a payment has settled during the regular automated end of day batch closing, it means the payment is now
closed to changes and the funds transfer process is now beginning. The payment can no longer be voided and if it
becomes necessary to reverse the payment for whatever reason (perhaps a return of merchandise), the payment
will need to be refunded. To process a Refund on a debit card payment, the following fields are recommended for
the request to the API.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command REFUND 32 CHARs Required
paymentMethod DEBITCARD 32 CHARs Required
trackingNumber A valid tracking number from a 16 CHARs Required

previously settled payment.

Response Fields

The following response fields are what you may expect from an attempt to refund a debit card.

Field Value Type Notes
command The original request 32 CHARs Echoed from request — This is the
command this response is command that was attempted

referring to.

commandResponseCode The response to attempting 1 NUM This is the overall response to the
the ‘command’ 1 for request ‘command’ field. Do not
successful, 2 for declined, 3 confuse this with the
for error paymentResponseCode
commandResponseText The text describing the 120 CHARs A description of the declined
commandResponseCode message or error that occurred by

attempting to process the request

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

‘command’.

paymentMethod An echo of the 32 CHARs This varies by type of operation you
paymentMethod sent in are processing
the request

trackingNumber Echoed from the request 16 CHARs This is a unique ID witha1to 1
relationship per transaction attempt.

paymentResponseCode The payment ‘response 1 NUM This is the value that indicates if a
code’ returned from the refund attempt was approved or
transaction. In general it’s declined.

1 for successful, 2 for
declined, 3 for error

paymentResponseText The ‘response text’ 120 CHARs The description of the
returned from attempting paymentResponseCode. This will
to refund a payment likely be ‘Transaction refunded

successfully’ or the reason the
transaction could not be refunded,
most often because it has already
been refunded, or has not yet
settled.

Example SOAP Request

The following is an example raw SOAP request for an attempt to refund a debit card payment. Please use the built
in or third party SOAP libraries for your programming language to post payments. The following is only for
illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>REFUND</proc:command>
<proc:paymentMethod>DEBITCARD</proc:paymentMethod>
<proc:trackingNumber>1332342565264</proc:trackingNumber>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">

<soapenv:Body>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl [kt

<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>REFUND</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed refund.
</commandResponseText>
<paymentMethod>DEBITCARD</paymentMethod>
<trackingNumber>1332342565264</trackingNumber>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText>Transaction refunded successfully.
</paymentResponseText>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

ACH / Online Checks

Processing an ACH Debit Transaction (ACH Debit)

Request Fields

The most common type of ACH payment (aka ACH Debit) is to process a single payment that debits funds from the
customer’s bank account and credits the merchant’s bank account via the 9 digit ABA number and 4-17 digit bank
account number of the customer’s bank account. Below are the fields recommended to send to the API to process
this type of payment.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required

command TRANSACT 32 CHARs Required

test Either TRUE or not. Anything thatis 8 CHARs Optional — flags to the
sent other than TRUE is interpreted system if this is a test
as a non-test transaction. transaction or not

paymentMethod ACH 32 CHARs Required

paymentSubMethod One of the following: Checking, 16 CHARs Required

Savings, Business

bankRoutingNumber The 9 digit ABA or Bank Routing 9 CHARs Required
Number located on the bottom left
side of a paper check

bankAccountNumber The customer’s Bank Account 17 CHARs Required
Number, usually between 4 and 17
digits, located to the right of their
Bank Routing Number on their paper

checks
checkDate The date to process the check in 10 CHARs Optional. If you don’t
YYYY-MM-DD format pass this in, or if you

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl)il

send a blank value, we
will automatically set it
to today’s date

paymentAmount The amount to charge, ex: 1.01 12 CHARs Required
serviceFee An additional service fee to charge if 12 CHARs Optional — will be added
you like, ex: 0.25 to the paymentAmount

before processing

billFirstName The customer’s first name 25 CHARs Required

billLastName The customer’s last name 25 CHARs Required

billCompany If the customer is a company and not 50 CHARs Optional. This can be
an individual, you can send the used instead of the
company name here billFirstName

billLastName but at least
one or the other is

required

billAddress The customer’s house number and 50 CHARs Required
street, ex: 123 Test St

billCity The customer’s city, ex: Springfield 25 CHARs Required

billState The two digit state or province 2 CHARs Required
abbreviation

billZip The 5-10 digit zip code for the 10 CHARs Required
customer

billPhone The customer’s 10 digit phone 10 CHARs Optional
number

billEmail The customer’s email address 50 CHARs Optional

Other informational fields may be sent in addition to the above. Please see Appendix B (Request Fields) for a
listing of all fields in the event you would like to send more customer information for tracking and reporting
purposes.

Response Fields

The following response fields are what you may expect from an attempt to process an ACH Debit payment.

Field Value Type Notes

command The original ‘command’ 32 CHARs Echoed from request —
this response is referring This is the command that
to. was attempted

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

commandResponseCode

commandResponseText

paymentMethod

paymentAmount

paymentResponseCode

paymentResponseText

paymentTransactionID

trackingNumber

The response to
attempting the
‘command’ 1 for
successful, 2 for declined,
3 for error

The text describing the
commandResponseCode

An echo of the
paymentMethod sent in
the request

The amount attempted
to charge. Ex: 1.01

The payment ‘response
code’ returned from the
transaction. In general
it’s 1 for successful, 2 for
declined, 3 for error

The ‘response text’
returned from
attempting the
transaction

The transaction ID as
provided by the back end
gateway or processor.

The RegalTek unique
tracking number for the
payment.

1NUM

120 CHARs

32 CHARs

12 CHARs

1NUM

120 CHARs

16 CHARs

16 CHARs

This is the overall
response to the
‘command’ field. Do not
confuse this with the
paymentResponseCode

A description of the
declined message or error
that occurred by
attempting to process the
request ‘command’.

This varies by type of
operation you are
processing

This is echoed from the
request

This is the value that
indicates if a payment was
approved or declined

The description of the
paymentResponseCode.
This will likely be
‘Transaction Inserted
Successfully’ or just
‘Success’.

This is a unique ID with a 1
to 1 relationship per
transaction attempt.

This is a unique ID with a 1
to 1 relationship per
transaction attempt.

Additionally other fields may be returned depending on what was sent in for the request, please see Appendix C

(Response Fields) for a listing of all possible return values.

Example SOAP Request

The following is an example raw SOAP request for an attempt to post an ACH Debit payment to the APIl. Please

use the built in or third party SOAP libraries for your programming language to post payments. The following is

only for illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:proc="http://processor">

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:test>TRUE</proc:test>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>TRANSACT</proc:command>
<proc:paymentMethod>ACH</proc:paymentMethod>
<proc:paymentSubMethod>Checking</proc:paymentSubMethod>
<proc:bankRoutingNumber>123456780</proc:bankRoutingNumber>
<proc:bankAccountNumber>123456</proc:bankAccountNumber>
<proc:checkDate>2012-12-25</proc:checkDate>
<proc:paymentAmount>1.01</proc:paymentAmount>
<proc:serviceFee></proc:serviceFee>
<proc:billFirstName>test</proc:billFirstName>
<proc:billLastName>test</proc:billLastName>
<proc:billAddress>123 test st</proc:billAddress>
<proc:billCity>Springfield</proc:billCity>
<proc:billState>CA</proc:billState>
<proc:billzip>90210</proc:billzip>
<proc:billPhone>444-555-6666</proc:billPhone>
<proc:billEmail>support@e-complish.com</proc:billEmail>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>TRANSACT</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed transaction.
</commandResponseText>
<paymentMethod>ACH</paymentMethod>
<paymentAmount>1.01</paymentAmount>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText> (TESTMODE) Transaction Inserted Successfully.
</paymentResponseText>
<paymentTransactionID>1280893546734</paymentTransactionID>
<trackingNumber>1280893546734</trackingNumber>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl [yl

Testing

To perform a test ACH payment, simply pass in the field ‘test’ and set the value to ‘TRUE’ and use one of the
following scenarios listed below.

Creating an APPROVED test check payment:

Use the ‘bankAccountNumber’ value of 123456
Creating a DECLINED test check payment:

Use any ‘bankAccountNumber’ other than 123456

** Note: If you encounter the message “bankRoutingNumber does not conform to ABA test”, you can use
123456780 as a test bankRoutingNumber as it does successfully conform to the ABA/Mod 10 algorithm.

Sending an ACH Credit Transaction (ACH Credit)

Request Fields

A second type of ACH transaction can be made which is to debit the funds from the merchant’s bank account and
send/credit funds to the customer’s bank account. This is called an ACH Credit. It is like a refund, but needs no
initial transaction to exist. This is sometimes also known as an ‘Independent Credit’. Below are the fields
recommended to send to the API to process this type of payment.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required

command TRANSACT 32 CHARs Required
paymentMethod ACH 32 CHARs Required
transactionType CREDIT 16 CHARs Required —if this is not

present or is blank, then
DEBIT is assumed.

test Either TRUE or not. Anything thatis 8 CHARs Optional — flags to the
sent other than TRUE is interpreted system if this is a test
as a non-test transaction. transaction or not

paymentSubMethod One of the following: Checking, 16 CHARs Required

Savings, Business

bankRoutingNumber The 9 digit ABA or Bank Routing 9 CHARs Required
Number located on the bottom left
side of a paper check

bankAccountNumber The customer’s Bank Account 17 CHARs Required
Number, usually between 4 and 17

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

checkDate

paymentAmount

serviceFee

billFirstName
billLastName

billCompany

billAddress

billCity

billState

billzip

billPhone

billEmail

digits, located to the right of their
Bank Routing Number on their paper
checks

The date to process the check in
YYYY-MM-DD format

The amount to charge, ex: 1.01

An additional service fee to charge if
you like, ex: 0.25

The customer’s first name
The customer’s last name

If the customer is a company and not
an individual, you can send the
company name here

The customer’s house number and
street, ex: 123 Test St

The customer’s city, ex: Springfield

The two digit state or province
abbreviation

The 5-10 digit zip code for the
customer

The customer’s 10 digit phone
number

The customer’s email address

10 CHARs

12 CHARs

12 CHARs

25 CHARs

25 CHARs

50 CHARs

50 CHARs

25 CHARs

2 CHARs

10 CHARs

10 CHARs

50 CHARs

Optional. If you don’t
pass this in, or if you
send a blank value, we
will automatically set it
to today’s date

Required

Optional — will be added
to the paymentAmount
before processing

Required
Required

Optional. This can be
used instead of the
billFirstName
billLastName but at least
one or the other is
required

Required

Required

Required

Required

Optional

Optional

Other informational fields may be sent in addition to the above. Please see Appendix B (Request Fields) for a listing

of all fields in the event you would like to send more customer information for tracking and reporting purposes.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Response Fields

The following response fields are what you may expect from an attempt to process an ACH Credit.

Field

command

commandResponseCode

commandResponseText

transactionType

paymentMethod

paymentAmount

paymentResponseCode

paymentResponseText

paymentTransactionID

trackingNumber

Value

The original ‘command’
this response is referring
to.

The response to
attempting the
‘command’ 1 for
successful, 2 for declined,
3 for error

The text describing the
commandResponseCode

This is set to CREDIT as
per the request post

An echo of the
paymentMethod sent in
the request

The amount attempted
to charge. Ex: 1.01

The payment ‘response
code’ returned from the
transaction. In general
it’s 1 for successful, 2 for
declined, 3 for error

The ‘response text’
returned from
attempting the
transaction

The transaction ID as
provided by the back end
gateway or processor.

The RegalTek unique

Type

32 CHARs

1NUM

120 CHARs

16 CHARs

32 CHARs

12 CHARs

1NUM

120 CHARs

16 CHARs

16 CHARs

Notes

Echoed from request —
This is the command that
was attempted

This is the overall
response to the
‘command’ field. Do not
confuse this with the
paymentResponseCode

A description of the
declined message or error
that occurred by
attempting to process the
request ‘command’.

If this is not present or
blank, it can be assumed
that the response refers
to a DEBIT transaction

This varies by type of
operation you are
processing

This is echoed from the
request

This is the value that
indicates if a payment was
approved or declined

The description of the
paymentResponseCode.
This will likely be
‘Transaction Inserted
Successfully’ or just
‘Success’.

This is a unique ID with a 1
to 1 relationship per
transaction attempt.

This is a unique ID with a 1

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

tracking number for the to 1 relationship per
payment. transaction attempt.

Additionally other fields may be returned depending on what was sent in for the request, please see Appendix C
(Response Fields) for a listing of all possible return values.

Example SOAP Request

The following is an example raw SOAP request for an attempt to post an ACH Credit to the APl. Please use the
built in or third party SOAP libraries for your programming language to post payments. The following is only for
illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:test>TRUE</proc:test>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>TRANSACT</proc:command>
<proc:paymentMethod>ACH</proc:paymentMethod>
<proc:transactionType>CREDIT</proc:transactionType>
<proc:paymentSubMethod>Checking</proc:paymentSubMethod>
<proc:bankRoutingNumber>123456780</proc:bankRoutingNumber>
<proc:bankAccountNumber>123456</proc:bankAccountNumber>
<proc:checkDate>2012-12-25</proc:checkDate>
<proc:paymentAmount>1.01</proc:paymentAmount>
<proc:serviceFee></proc:serviceFee>
<proc:billFirstName>test</proc:billFirstName>
<proc:billLastName>test</proc:billLastName>
<proc:billAddress>123 test st</proc:billAddress>
<proc:billCity>Springfield</proc:billCity>
<proc:billState>CA</proc:billState>
<proc:billzip>90210</proc:billzip>
<proc:billPhone>444-555-6666</proc:billPhone>
<proc:billEmail>support@e-complish.com</proc:billEmail>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

instance">

<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>

<command>TRANSACT</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed transaction.
</commandResponseText>
<transactionType>CREDIT</transactionType>
<paymentMethod>ACH</paymentMethod>
<paymentAmount>1.01</paymentAmount>
<paymentResponseCode>1</paymentResponseCode>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl ek}

<paymentResponseText> (TESTMODE) Transaction Inserted Successfully.
</paymentResponseText>
<paymentTransactionID>1280893546734</paymentTransactionID>
<trackingNumber>1280893546734</trackingNumber>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Testing

To perform a test ACH payment, simply pass in the field ‘test’ and set the value to ‘TRUE’ and use one of the
following scenarios listed below.

Creating an APPROVED test check payment:

Use the ‘bankAccountNumber’ value of 123456
Creating a DECLINED test check payment:

Use any ‘bankAccountNumber’ other than 123456

** Note: If you encounter the message “bankRoutingNumber does not conform to ABA test”, you can use
123456780 as a test bankRoutingNumber as it does successfully conform to the ABA/Mod 10 algorithm.

Updating an ACH Transaction

Request Fields

The APl provides the ability to modify or update an existing ACH transaction that is in the system, prior to
closing/settling the ACH batch. The first four fields below are required and the remaining fields are suggestions as
to what you may wish to update about the payment.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command UPDATE 32 CHARs Required
paymentMethod ACH 32 CHARs Required
trackingNumber The trackingNumber of the 16 CHARs Required

previously authorized payment you
wish to update.

* The remaining fields below are all optional and only listed as suggestions of information that you may wish to
update about a payment *

transactionType Whether this should be a CREDIT or 16 CHARs Optional

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

DEBIT type of transaction

paymentSubMethod One of the following: Checking, 16 CHARs Optional
Savings, Business

bankRoutingNumber The 9 digit ABA or Bank Routing 9 CHARs Optional
Number located on the bottom left
side of a paper check

bankAccountNumber The customer’s Bank Account 17 CHARs Optional
Number, usually between 4 and 17
digits, located to the right of their
Bank Routing Number on their paper

checks
paymentAmount The amount to charge, ex: 1.01 12 CHARs Optional
billFirstName The customer’s first name 25 CHARs Optional
billLastName The customer’s last name 25 CHARs Optional
billAddress The customer’s house number and 50 CHARs Optional

street, ex: 123 Test St
billCity The customer’s city, ex: Springfield 25 CHARs Optional

billState The two digit state or province 2 CHARs Optional
abbreviation

billZip The 5-10 digit zip code for the 10 CHARs Optional
customer

billPhone The customer’s 10 digit phone 10 CHARs Optional
number

billEmail The customer’s email address 50 CHARs Optional

Other informational fields may be sent in addition to the above. Please see Appendix B (Request Fields) for a
listing of all fields in the event you would like to send more customer information for tracking and reporting
purposes.

Response Fields

The following response fields are what you may expect from an attempt to update an ACH payment.

Field Value Type Notes
command The original ‘command’ this 32 CHARs Echoed from request —
response is referring to. This is the command that

was attempted

commandResponseCode The response to attempting 1 NUM This is the overall response

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

the ‘command’ 1 for
successful, 2 for declined, 3

to the ‘command’ field.
Do not confuse this with

for error the
paymentResponseCode
commandResponseText The text describing the 120 CHARs A description of the
commandResponseCode declined message or error
that occurred by
attempting to process the
request ‘command’.
paymentMethod An echo of the 32 CHARs This varies by type of
paymentMethod sent in operation you are
the request processing
trackingNumber The tracking number for 16 CHARs This is a unique ID with a 1
the payment as posted in to 1 relationship per
the request transaction attempt.
transactionType If the resulting payment is 16 CHARs If this is not present or

a CREDIT payment, this will
be set to CREDIT

blank, it can be assumed
that the response refers to
a DEBIT transaction

Additionally other fields may be returned depending on what was sent in for the request, please see Appendix C

(Response Fields) for a listing of all possible return values.

Example SOAP Request

The following is an example raw SOAP request for an attempt to update the customer’s name, bank account type,

and payment amount for a previously inserted ACH transaction.

Please use the built in or third party SOAP

libraries for your programming language to post payments. The following is only for illustration and

troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">

<soapenv:Header/>
<soapenv:Body>

<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>UPDATE</proc:command>
<proc:paymentMethod>ACH</proc:paymentMethod>

<proc:trackingNumber>1280893546734</proc:trackingNumber>
<proc:billFirstName>John</proc:billFirstName>
<proc:billLastName>Doe</proc:billLastName>
<proc:paymentSubMethod>Savings</proc:paymentSubMethod>
<proc:paymentAmount>2.02</proc:paymentAmount>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl [BeVil

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>UPDATE</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed update.
</commandResponseText>
<paymentMethod>ACH</paymentMethod>
<trackingNumber>1280893546734</trackingNumber>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Deleting an ACH Transaction

Request Fields

In the event that you wish to delete or void an ACH transaction before the settlement process occurs, the following
fields are recommended for the request.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command VOID 32 CHARs Required
paymentMethod ACH 32 CHARs Required
trackingNumber A valid tracking number from a 16 CHARs Required

previously authorized payment.

Response Fields

The following response fields are what you may expect from an attempt to void a transaction.

Field Value Type Notes
command The original request 32 CHARs Echoed from request — This is the
command this response is command that was attempted

referring to.

commandResponseCode The response to attempting 1 NUM This is the overall response to the
the ‘command’ 1 for request ‘command’ field. Do not
successful, 2 for declined, 3 confuse this with the

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl el

commandResponseText

paymentMethod

trackingNumber

paymentResponseCode

paymentResponseText

Example SOAP Request

for error

The text describing the
commandResponseCode

An echo of the
paymentMethod sent in
the request

Echoed from the request

The payment ‘response
code’ returned from the
transaction. In general it’s
1 for successful, 2 for
declined, 3 for error

The ‘response text’
returned from attempting
to void (delete) a payment

120 CHARs

32 CHARs

16 CHARs

1NUM

120 CHARs

paymentResponseCode

A description of the declined
message or error that occurred by
attempting to process the request
‘command’.

This varies by type of operation you
are processing

This is a unique ID witha1to 1
relationship per transaction attempt.

This is the value that indicates if a
void (delete) attempt was approved
or declined.

The description of the
paymentResponseCode. These will
likely be ‘Transaction voided
successfully’ or the reason the
transaction could not be voided,
most often because it already
settled.

The following is an example raw SOAP request for an attempt to void (delete) an ACH transaction. Please use the

built in or third party SOAP libraries for your programming language to post payments. The following is only for

illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">

<soapenv:Header/>
<soapenv:Body>

<proc:processCommand>
<proc:merchantCode>K3L45JL.3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>VOID</proc :command>
<proc:paymentMethod>ACH</proc:paymentMethod>

<proc:trackingNumber>1332342565265</proc:trackingNumber>

</proc:processCommand>

</soapenv:Body>
</soapenv:Envelope>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl el

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>VOID</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed void.
</commandResponseText>
<paymentMethod>ACH</paymentMethod>
<trackingNumber>1332342565265</trackingNumber>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText>Transaction voided successfully.
</paymentResponseText>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Settling ACH Transactions

Request Fields

The API optionally provides the ability to invoke a ‘settle’ command against your own currently open batch of ACH
transactions. This is useful for merchants who want to be in control of their own timing and limits for which
transactions get sent and processed as a batch. The default approach is to have the merchant manually process
their open ACH batches before 5:00PM EST daily using the ACHNow .Net ACH Processor interface. Alternatively,
the merchant can use a process called AutoSend that will automatically process any open ACH batch at specified
time of day (usually before 5PM EST daily). Please contact your merchant support manager or sales representative
to have a custom time that ACH transactions will settle should you choose to use AutoSend.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command SETTLE_BATCH 32 CHARs Required
paymentMethod ACH 32 CHARs Required

Response Fields

The following response fields are what you may expect from an attempt to settle the current ACH batch.

Field Value Type Notes
command The original request 32 CHARs Echoed from request — This is the
command this response is command that was attempted

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API el

referring to.

commandResponseCode The response to attempting 1 NUM This is the overall response to the
the ‘command’ 1 for request ‘command’ field. Do not
successful, 2 for declined, 3 confuse this with the
for error paymentResponseCode
commandResponseText The text describing the 120 CHARs A description of the declined
commandResponseCode message or error that occurred by
attempting to process the request
‘command’.
paymentMethod An echo of the 32 CHARs This varies by type of operation you
paymentMethod sent in are processing

the request

Example SOAP Request

The following is an example raw SOAP request for an attempt to settle an ACH batch. Please use the built in or
third party SOAP libraries for your programming language to post payments. The following is only for illustration
and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>SETTLE BATCH</proc:command>
<proc:paymentMethod>ACH</proc:paymentMethod>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>SETTLE_BATCH</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully settled batch.
</commandResponseText>
<paymentMethod>ACH</paymentMethod>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl [Be¥:]

Refunding an ACH Payment

Request Fields

When an ACH payment has settled and can no longer be deleted or modified, it is sometimes needed to reverse or
refund the payment for whatever reason (perhaps a return of merchandise). To process a Refund on an ACH Debit
payment, the following fields should be sent to the API.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command REFUND 32 CHARs Required
paymentMethod ACH 32 CHARs Required
trackingNumber A valid tracking number from a 16 CHARs Required

previously settled payment.

* Note: For security and good business practice reasons, this method only works on payments that were originally
ACH Debits, i.e. situations where the merchant has collected funds from the customer and now wants to refund
those funds.

Response Fields

The following response fields are what you may expect from an attempt to refund an ACH Debit payment.

Field Value Type Notes
command The original request 32 CHARs Echoed from request — This is the
command this response is command that was attempted

referring to.

commandResponseCode The response to attempting 1 NUM This is the overall response to the
the ‘command’ 1 for request ‘command’ field. Do not
successful, 2 for declined, 3 confuse this with the
for error paymentResponseCode
commandResponseText The text describing the 120 CHARs A description of the declined
commandResponseCode message or error that occurred by
attempting to process the request
‘command’.
paymentMethod An echo of the 32 CHARs This varies by type of operation you
paymentMethod sent in are processing
the request
trackingNumber Echoed from the request 16 CHARs This is a unique ID witha1to 1

relationship per transaction attempt.

paymentResponseCode The payment ‘response 1NUM This is the value that indicates if a
code’ returned from the refund attempt was approved or
transaction. In general it’s

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

1 for successful, 2 for declined.
declined, 3 for error

paymentResponseText The ‘response text’ 120 CHARs The description of the
returned from attempting paymentResponseCode. This will
to refund a payment likely be ‘Transaction refunded

successfully’ or the reason the
transaction could not be refunded,
most often because it has already
been refunded, or has not yet
settled.

Example SOAP Request

The following is an example raw SOAP request for an attempt to refund an ACH Debit payment. Please use the
built in or third party SOAP libraries for your programming language to post payments. The following is only for
illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>REFUND</proc:command>
<proc:paymentMethod>ACH</proc:paymentMethod>
<proc:trackingNumber>1332342565264</proc:trackingNumber>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>REFUND</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed refund.
</commandResponseText>
<paymentMethod>ACH</paymentMethod>
<trackingNumber>1332342565264</trackingNumber>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText>Transaction refunded successfully.
</paymentResponseText>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Wire Transfers

Posting a Wire Transfer

The API provides the ability to send an electronic bank-to-bank Wire Transfer. This is similar to the ACH functions
mentioned above in that the destination Bank Routing Number and Bank Account Number are required, but has an
additional benefit of transferring funds directly in real-time instead of going through the ACH settlement process
and potentially longer waiting cycle.

Request Fields

To post a Wire Transfer, the following request fields should be sent to the API.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command TRANSACT 32 CHARs Required
paymentMethod WIRE 32 CHARs Required
paymentAmount The amount of funds to transfer 12 CHARs Required

in dollars and cents, ex: 1.01

serviceFee An additional service fee to 12 CHARs Optional — will be added
charge if you like, ex: 0.25 to the paymentAmount
before processing

bankRoutingNumber The receivers bank 9 digit ABA or 9 CHARs Required
Bank Routing Number.

bankAccountNumber The receivers Bank Account 17 CHARs Required
Number, between 4 and 17
digits.
billFirstName The receivers first name 25 CHARs Required
billLastName The receivers last name 25 CHARs Required
billAddress The receivers street address 35 CHARs Required

which should match the address
on file at the receivers bank

account
billCity The receivers city 35 CHARs Required
billState The two digit state or province 2 CHARs Required

abbreviation

billZip The 5-10 digit zip code for the 10 CHARs Required
customer

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

billPhone

description

Other informational fields may be sent in addition to the above.

The customer’s 10 digit phone

number

An optional field to provide

10 CHARs

120 CHARs

information to the receiver from

the sender. Ex: “Monthly
Payment for June”

Optional but
recommended

Optional but
recommended

Please see Appendix B (Request Fields) for a

listing of all fields in the event you would like to send more customer information for tracking and reporting

purposes.

Response Fields

The following response fields are what you may expect from an attempt to process a Wire transfer.

Field

command

commandResponseCode

commandResponseText

paymentMethod

paymentAmount

paymentResponseCode

paymentResponseText

Value

The original ‘command’ this
response is referring to.

The response to attempting
the ‘command’ 1 for
successful, 2 for declined, 3
for error

The text describing the
commandResponseCode

An echo of the
paymentMethod sent in
the request

The amount attempted to
charge. Ex: 1.01

The payment ‘response
code’ returned from the
transaction. In general it’s
1 for successful, 2 for
declined, 3 for error

The ‘response text’
returned from attempting
the transaction

Type

32 CHARs

1NUM

120 CHARs

32 CHARs

12 CHARs

1NUM

120 CHARs

Notes

Echoed from request —
This is the command that
was attempted

This is the overall response
to the ‘command’ field.

Do not confuse this with
the
paymentResponseCode

A description of the
declined message or error
that occurred by
attempting to process the
request ‘command’.

This varies by type of
operation you are
processing

This is echoed from the
request

This is the value that
indicates if the wire
request was properly
formatted and is being
submitted to the Fed

The description of the
paymentResponseCode.
This will likely be
‘Transaction Inserted

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Successfully’ or just

‘Success’.
trackingNumber The RegalTek unique 16 CHARs This is a unique ID with a 1
tracking number for the to 1 relationship per
payment. transaction attempt.

Additionally other fields may be returned depending on what was sent in for the request, please see Appendix C
(Response Fields) for a listing of all possible return values.

Example SOAP Request

The following is an example raw SOAP request for an attempt to post a Wire Transfer to the API. Please use the
built in or third party SOAP libraries for your programming language to post payments. The following is only for
illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>TRANSACT</proc:command>
<proc:paymentMethod>WIRE</proc:paymentMethod>
<proc:paymentAmount>1.01</proc:paymentAmount>
<proc:bankRoutingNumber>123456780</proc:bankRoutingNumber>
<proc:bankAccountNumber>123456</proc:bankAccountNumber>
<proc:billFirstName>Mary</proc:billFirstName>
<proc:billLastName>Smith</proc:billLastName>
<proc:billAddress>123 test st</proc:billAddress>
<proc:billCity>Springfield</proc:billCity>
<proc:billState>CA</proc:billState>
<proc:billzip>90210</proc:billzip>
<proc:billPhone>444-555-6666</proc:billPhone>
<proc:description>Payment for November Services</proc:description>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

instance">

<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>

<command>TRANSACT</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed transaction.</commandResponseText>
<paymentMethod>WIRE</paymentMethod>
<paymentAmount>1.01</paymentAmount>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText>Transaction Inserted Successfully.</paymentResponseText>
<trackingNumber>1280893546734</trackingNumber>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API Wik}

</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Settling Wire Transfers

Wire transfers are batched and sent to the Federal Reserve for approval on an hourly basis. There is no ‘end of
day’ settlement process or manual settlement process that occurs. For this reason, merchants should be sure that
they want the wire transfer to occur (submitted to the Fed for approval) because once it’s submitted, there is no
ability to void or cancel the transfer. For a more flexible (but slower) process, the ACH functions should be used.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API Wil

Scheduling Transactions

Future Transactions

Inserting a Future Transaction

The API also has the ability to hold on to a transaction for a specified period of time before posting it to the
appropriate processor for processing. This type of transaction we refer to as a FuturePay transaction, and it works
for all payment methods listed above (CREDITCARD, DEBITCARD, ACH and WIRE).

To specify that you would like to insert a transaction for processing at a later date, simply send a field named
‘paymentDate’ in the format of YYYY-MM-DD along with the other fields for that transaction. If the paymentDate
is received by the system and that date is greater than today, the system will automatically recognize that this
should be marked as a Future Transaction.

Bear in mind however that you will not get a definitive answer of whether the transaction is approved or declined
because the transaction will not have been sent to the processor yet. The system does, however, verify the
incoming data to make sure the card numbers, bank numbers, etc., conform to the standard numbering algorithms
and verify as much as we can that the transaction is a good candidate for approval.

In addition, for credit card and pin-less debit card payments, we will run a 1 cent pre-authorization against the card
to verify that the card number, expiration date and CVV code are actually correct before inserting the FuturePay
transaction. The 1 cent pre-authorization drops off at the end of the business day and is never actually charged
nor reflected on the customer’s card statement.

Below is example SOAP request and response for sending in a single one-time Credit Card payment to be
processed on a future date.

Request Fields

For Request Fields needed for Future transactions, please see the appropriate previous section that matches the
which type of transaction you would like to submit, then make sure to add the ‘paymentDate’ field to the request.

Response Fields

For Response Fields returned for Future transactions, please see the appropriate previous section that matches the
which type of transaction you are submitting, however, please note that the response will not be indicative of
whether the funds will actually process or not. It will only indicate if the transaction has been successfully
scheduled for processing.

To follow up later and get the response value from the processor, you will need to use the online reporting tools,
or Query functionality of the API as described in the Querying and Reporting section of this document.

Example SOAP Request for a Credit Card Future Payment

Here is an example SOAP request to insert a future dated credit card payment to illustrate how it works.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">

<soapenv:Header/>

<soapenv:Body>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl WIS

<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>TRANSACT</proc:command>
<proc:paymentMethod>CREDITCARD</proc:paymentMethod>
<proc:paymentDate>2014-01-01</proc:paymentDate>
<proc:paymentSubMethod>Visa</proc:paymentSubMethod>
<proc:creditCardNumber>4242424242424242</proc:creditCardNumber>
<proc:expireMonth>01</proc:expireMonth>
<proc:expireYear>2016</proc:expireYear>
<proc:paymentAmount>1.01</proc:paymentAmount>
<proc:serviceFee>0.25</proc:serviceFee>
<proc:billFirstName>test</proc:billFirstName>
<proc:billLastName>test</proc:billLastName>
<proc:billAddress>123 test st</proc:billAddress>
<proc:billCity>Springfield</proc:billCity>
<proc:billState>CA</proc:billState>
<proc:billzip>90210</proc:billzip>
<proc:billPhone>444-555-6666</proc:billPhone>
<proc:billEmail>support@e-complish.com</proc:billEmail>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

instance">

<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>

<command>TRANSACT</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed transaction.
</commandResponseText>
<paymentMethod>CREDITCARD</paymentMethod>
<paymentAmount>1.01</paymentAmount>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText>Future payment inserted successfully.

</paymentResponseText>
<trackingNumber>1280892202844</trackingNumber>

</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Updating a Future Transaction

To modify / update a Future transaction, you will need to pass in the standard required authentication values
along with the trackingNumber and fields you would like updated.

Request Fields

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

The first four fields below are required and the remaining fields are suggestions as to what you may wish to update
about the transaction. The fields you choose are likely going to vary based on the type of Future transaction you
are modifying.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command UPDATE 32 CHARs Required
paymentMethod One of ACH, CREDITCARD, 32 CHARs Required

DEBITCARD or WIRE

trackingNumber The trackingNumber of the 16 CHARs Required
previously inserted future payment.

* The remaining fields below are all optional and only listed as suggestions of information that you may wish to
update about a payment *

paymentDate The date to process this payment in 10 CHARs Optional
YYYY-MM-DD format

paymentAmount The amount to charge, ex: 1.01 12 CHARs Optional
billFirstName The customer’s first name 25 CHARs Optional
billLastName The customer’s last name 25 CHARs Optional

Other informational fields may be sent in addition to the above. Please see Appendix B (Request Fields) for a
listing of all fields in the event you would like to send more customer information for tracking and reporting
purposes.

Response Fields

The following response fields are what you may expect from an attempt to update a Future transaction.

Field Value Type Notes
command The original ‘command’ this 32 CHARs Echoed from request —
response is referring to. This is the command that

was attempted

commandResponseCode The response to attempting 1 NUM This is the overall response
the ‘command’ 1 for to the ‘command’ field.
successful, 2 for declined, 3 Do not confuse this with
for error the
paymentResponseCode
commandResponseText The text describing the 120 CHARs A description of the
commandResponseCode declined message or error

that occurred by
attempting to process the

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

paymentMethod

trackingNumber

request ‘command’.

An echo of the 32 CHARs This varies by type of
paymentMethod sent in operation you are

the request processing

The tracking number for 16 CHARs This is a unique ID with a 1
the payment as posted in to 1 relationship per

the request transaction attempt.

Additionally other fields may be returned depending on what was sent in for the request, please see Appendix C

(Response Fields) for a listing of all possible return values.

Example SOAP Request

The following is an example raw SOAP request for an attempt to update the payment date and amount of a

previously scheduled FuturePay ACH payment.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">

<soapenv:Header/>

<soapenv:Body>

<proc:processCommand>

<proc:

merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT

</proc:merchantCode>

<proc:
<proc:
<proc:
<proc:

<proc

command>UPDATE</proc:command>
paymentMethod>ACH</proc:paymentMethod>
trackingNumber>1280893546734</proc:trackingNumber>
paymentDate>2014-02-02</proc:paymentDate>

:paymentAmount>2.02</proc:paymentAmount>

</proc:processCommand>

</soapenv:Body>

</soapenv:Envelope>

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>UPDATE</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Future payment successfully updated.
</commandResponseText>
<paymentMethod>ACH</paymentMethod>
<trackingNumber>1280893546734</trackingNumber>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

* Note: The system will automatically know if you are trying to update a future transaction, or for example, trying
to modify an existing ACH authorization that hasn’t settled yet, even though the command and paymentMethod
would be the same for both of these operations. We can tell which you are trying to do based on the current
status of the transaction in our system.

Cancelling a Future Transaction

Request Fields

In the event that you wish to cancel (or void) a previously inserted Future transaction before processing occurs, the
following fields should be sent in the request data.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required
command VOID 32 CHARs Required
paymentMethod One of ACH, CREDITCARD, 32 CHARs Required

DEBITCARD or WIRE

trackingNumber A valid tracking number from a 16 CHARs Required
previously scheduled payment.

Response Fields

The following response fields are what you may expect from an attempt to cancel a future transaction.

Field Value Type Notes
command The original request 32 CHARs Echoed from request — This is the
command this response is command that was attempted

referring to.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

commandResponseCode The response to attempting 1 NUM This is the overall response to the

the ‘command’ 1 for request ‘command’ field. Do not
successful, 2 for declined, 3 confuse this with the
for error paymentResponseCode
commandResponseText The text describing the 120 CHARs A description of the declined
commandResponseCode message or error that occurred by
attempting to process the request
‘command’.
paymentMethod An echo of the 32 CHARs This varies by type of operation you
paymentMethod sent in are processing
the request
trackingNumber Echoed from the request 16 CHARs This is a unique ID withal1to 1

relationship per transaction attempt.

Example SOAP Request

The following is an example raw SOAP request for an attempt to cancel / void a future payment. The following is
only for illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>VOID</proc:command>
<proc:paymentMethod>ACH</proc:paymentMethod>
<proc:trackingNumber>1332342565265</proc:trackingNumber>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>VOID</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully cancelled future payment.
</commandResponseText>
<paymentMethod>ACH</paymentMethod>
<trackingNumber>1332342565265</trackingNumber>
</processCommandReturn>
</processCommandResponse>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl 3]

</soapenv:Body>
</soapenv:Envelope>

Recurring Payment Plans

In addition to real-time single payments and future single payments, the system has the ability to create recurring
payment plans (that we call RecurPay) that occur on a frequency and duration that you specify.

Creating a RecurPay Plan

Request Fields

Listed below are the required and recommended fields that should be sent to the API for creating a RecurPay plan
for a customer.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required

command CREATE_RECURPAY_CUSTOMER 32 CHARs Required

test Either TRUE or not. Anythingthat 8 CHARs Optional — flags to the
is sent other than TRUE is system if this is a test
interpreted as a non-test transaction or not

transaction.

customerAccountNumber The merchant generated unique 32 CHARs Required — this is used
customer account number to to identify the customer
identify this RecurPay customer throughout the system
and in UPDATE and
CANCEL commands
recurringStartDate The date to begin or activate this 10 CHARs Required

recurring payment plan. Format
should be MM/DD/YYYY

recurringFrequency One of M (for monthly), T (for 1 CHAR Required
twice a month), B (for bi-weekly)
or W (for weekly)
recurringDateOfMonth1 A month day in the form of DD 2 CHARs Required for frequencies
of MorT
recurringDateOfMonth2 A second month day in the form of 2 CHARs Required for frequency
DD of T
recurringWeekDay A week day abbreviation, one of 2 CHARs Required for frequencies

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

recurringAmount

numberOfPayments

paymentMethod

paymentSubMethod

creditCardNumber

debitCardNumber

expireMonth

expireYear

cvvCode

bankRoutingNumber

bankAccountNumber

billFirstName

billLastName

billCompany

MO, TU, WE, TH, FR, SA, SU

The amount to bill on the
recurringFrequency specified

The number of payments
remaining in this payment plan
until the plan is completed

CREDITCARD, DEBITCARD or ACH

One of the following: Visa,
MasterCard, Amex, Discover,
Pinless Debit, Checking, Savings,
Business, Unknown

The customer’s credit card number

The customer’s debit card number

The customer’s card expiration
month

The customer’s card expiration
year

The cvv2 also known as security
code from the back of the card

The 9 digit Bank Routing Number
in the case of ACH payments

The 4-17 digit Bank Account
Number in the case of ACH
payments

The customer’s first name
The customer’s last name

If the customer is a company and

not an individual, you can send the

12 CHARs

6 CHARs

32 CHARs

16 CHARs

16 CHARs

16 CHARs

2 CHARs

4 CHARs

3-4 CHARs

12 CHARs

17 CHARs

25 CHARs

25 CHARs

50 CHARs

of Bor W

Required

Required — Note this
automatically counts
down each time a
payment is attempted

Required

Required

Required for
paymentMethod =
CREDITCARD

Required for
paymentMethod =
DEBITCARD

Required for
paymentMethod =
CREDITCARD or
DEBITCARD

Required for
paymentMethod =
CREDITCARD or
DEBITCARD

Optional, but highly
recommended. Used
for CREDITCARD
paymentMethod.

Required

Optional — will be added
to the paymentAmount
before processing

Required
Required

Optional. This can be
used instead of the

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

billAddress

bill City
billState

billZip

billPhone

billEmail

Response Fields

company name here

The customer’s house number and
street, ex: 123 Test St

The customer’s city, ex: Springfield
The two digit state abbreviation

The 5-10 digit zip code for the
customer

The customer’s 10 digit phone
number

The customer’s email address

50 CHARs

25 CHARs

2 CHARs

10 CHARs

10 CHARs

50 CHARs

billFirstName
billLastName but at least
one or the other is
required

Required

Required
Required

Optional but highly
recommended

Optional

Optional

The following response fields are what you may expect from an attempt to create a RecurPay plan.

Field

command

commandResponseCode

commandResponseText

customerAccountNumber

paymentMethod

Value Type

The original ‘command’ this 32 CHARs

response is referring to.

The response to attempting 1 NUM

the ‘command’ 1 for
successful, 2 for declined, 3
for error

The text describing the 120 CHARs
commandResponseCode

Echoed from the original 32 CHARs
request

An echo of the 32 CHARs

paymentMethod sent in
the request

Notes

Echoed from request —
This is the command that
was attempted

This is the overall response
to the ‘command’ field.

Do not confuse this with
the
paymentResponseCode

A description of the
declined message or error
that occurred by
attempting to process the
request ‘command’.

This is the unique
identifier for this RecurPay
customer. The merchant
sends this in during the
request to create the plan

This varies by type of
operation you are
processing

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

paymentAmount The recurring amount of 12 CHARs This is echoed from the
the payment plan recurringAmount sent in
with the request fields

Example SOAP Request
The following illustrates an example SOAP request to create a recurring credit card payment plan in the system.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:test>TRUE</proc:test>
<proc:command>CREATE RECURPAY CUSTOMER</proc:command>
<proc:customerAccountNumber>123456789012</proc:customerAccountNumber>
<proc:recurringStartDate>01/17/2013</proc:recurringStartDate>
<proc:recurringFrequency>M</proc:recurringFrequency>
<proc:recurringDateOfMonthl>01</proc:recurringDateOfMonthl>
<proc:recurringAmount>19.95</proc:recurringAmount>
<proc:numberOfPayments>12</proc:numberOfPayments>
<proc:paymentMethod>CREDITCARD</proc:paymentMethod>
<proc:paymentSubMethod>Visa</proc:paymentSubMethod>
<proc:creditCardNumber>4242424242424242</proc:creditCardNumber>
<proc:expireMonth>01</proc:expireMonth>
<proc:expireYear>2014</proc:expireYear>
<proc:cvvCode>123</proc:cvvCode>
<proc:billFirstName>Jonathan</proc:billFirstName>
<proc:billLastName>Doe</proc:billLastName>
<proc:billAddress>123 test st</proc:billAddress>
<proc:billCity>testville</proc:billCity>
<proc:billzip>90210</proc:billzip>
<proc:billState>CA</proc:billState>
<proc:billPhone>555-666-7777</proc:billPhone>
<proc:billEmail>jdoe@Rexample.com</proc:billEmail>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<Command>CREATE_RECURPAY_CUSTOMER< /command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully Created RecurPay Customer.
</commandResponseText>
<customerAccountNumber>123456789012</customerAccountNumber>
<paymentAmount>19.95</paymentAmount>
<paymentMethod>CREDITCARD</paymentMethod>
</processCommandReturn>
</processCommandResponse>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl il

</soapenv:Body>
</soapenv:Envelope>

*Note: RecurPay customers are identified by the ‘customerAccountNumber’ field. Subsequent updates and
cancels must use the ‘customerAccountNumber’ field to identify the customer.

Updating a RecurPay Plan

Request Fields

Listed below are the required and recommended fields that should be sent to the API for updating a RecurPay plan
for a customer.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required

command UPDATE_RECURPAY_CUSTOMER 32 CHARs Required

test Either TRUE or not. Anything thatis 8 CHARs Optional — flags to the
sent other than TRUE is interpreted system if this is a test
as a non-test transaction. transaction or not

customerAccountNumber The merchant generated unique 32 CHARs Required — this is used
customer account number to to identify the
identify this RecurPay customer customer. It was

previously sent during a
CREATE RecurPay call.

* The fields below are all optional and just an example of which fields you may wish to update.

paymentMethod CREDITCARD (for example) Canalso 32 CHARs Optional in this situation
be DEBITCARD or ACH

paymentSubMethod One of the following: Visa, 16 CHARs Optional in this situation
MasterCard, Amex, Discover, Pinless
Debit, Checking, Savings, Business,

Unknown

creditCardNumber The customer’s new credit card 16 CHARs Optional in this situation
number

expireMonth The customer’s new card expiration 2 CHARs Optional in this situation
month

expireYear The customer’s new card expiration 4 CHARs Optional in this situation
year

cvvCode The new cvv2 also known as security 4 CHARs Optional in this situation

code from the back of the card

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Response Fields

The following response fields are what you may expect from an attempt to UPDATE a RecurPay plan.

Field

command

commandResponseCode

commandResponseText

customerAccountNumber

paymentMethod

paymentAmount

Example SOAP Request

Value

The original ‘command’ this
response is referring to.

The response to attempting
the ‘command’ 1 for
successful, 2 for declined, 3
for error

The text describing the
commandResponseCode

Echoed from the original
request

An echo of the
paymentMethod sent in
the request originally when
the plan was created

The recurring amount of
the payment plan

Type

32 CHARs

1NUM

120 CHARs

32 CHARs

32 CHARs

12 CHARs

Notes

Echoed from request —
This is the command that
was attempted

This is the overall response
to the ‘command’ field.

Do not confuse this with
the
paymentResponseCode

A description of the
declined message or error
that occurred by
attempting to process the
request ‘command’.

This is the unique
identifier for this RecurPay
customer. The merchant
sends this in during the
request to create the plan

This varies by type of
operation you are
processing

This is echoed from the
recurringAmount sent in
originally when the plan
was created.

The following shows an example SOAP request to update a RecurPay customer’s credit card in the system.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:proc="http://processor">

<soapenv:Header/>
<soapenv:Body>

<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:test>TRUE</proc:test>

<proc:command>UPDATE RECURPAY CUSTOMER</proc:command>

<proc:customerAccountNumber>123456789012</proc:customerAccountNumber>
<proc:paymentMethod>CREDITCARD</proc:paymentMethod>

<proc:paymentSubMethod>MasterCard</proc:paymentSubMethod>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl [N

<proc:creditCardNumber>5454545454545454</proc:creditCardNumber>
<proc:expireMonth>01</proc:expireMonth>
<proc:expireYear>2015</proc:expireYear>
<proc:cvvCode>123</proc:cvvCode>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<COmmand>UPDATE_RECURPAY_CUSTOMER</Command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully Updated RecurPay Customer.
</commandResponseText>
<customerAccountNumber>123456789012</customerAccountNumber>
<paymentAmount>19.95</paymentAmount>
<paymentMethod>CREDITCARD</paymentMethod>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Cancelling a RecurPay Plan

Request Fields

Listed below are the fields that should be sent to the API for cancelling a RecurPay plan for a customer.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required

command CANCEL_RECURPAY_CUSTOMER 32 CHARs Required

test Either TRUE or not. Anything thatis 8 CHARs Optional — flags to the system if
sent other than TRUE is interpreted this is a test transaction or not

as a non-test transaction.

customerAccountNumber The merchant generated unique 32 CHARs Required — this is used to
customer account number to identify the customer. It was
identify this RecurPay customer previously sent during a CREATE

RecurPay call.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl 5y

Response Fields

The following response fields are what you may expect from an attempt to CANCEL a RecurPay plan.

Field

command

commandResponseCode

commandResponseText

customerAccountNumber

paymentMethod

paymentAmount

Example SOAP Request

Value

The original ‘command’ this
response is referring to.

The response to attempting
the ‘command’ 1 for
successful, 2 for declined, 3
for error

The text describing the
commandResponseCode

Echoed from the original
request

An echo of the
paymentMethod sent in
the request originally when
the plan was created

The recurring amount of
the payment plan

Type

32 CHARs

1NUM

120 CHARs

32 CHARs

32 CHARs

12 CHARs

Notes

Echoed from request —
This is the command that
was attempted

This is the overall response
to the ‘command’ field.

Do not confuse this with
the
paymentResponseCode

A description of the
declined message or error
that occurred by
attempting to process the
request ‘command’.

This is the unique
identifier for this RecurPay
customer. The merchant
sends this in during the
request to create the plan

This varies by type of
operation you are
processing

This is echoed from the
recurringAmount sent in
originally when the plan
was created.

The following shows an example SOAP request to update a RecurPay customer’s credit card in the system.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:proc="http://processor">

<soapenv:Header/>
<soapenv:Body>

<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:test>TRUE</proc:test>

<proc:command>CANCEL RECURPAY CUSTOMER</proc:command>

<proc:customerAccountNumber>123456789012</proc:customerAccountNumber>

</proc:processCommand>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl ¥

</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<COmmand>CANCEL_RECURPAY_CUSTOMER</Command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully Canceled RecurPay Customer</commandResponseText>
<customerAccountNumber>123456789012</customerAccountNumber>
<paymentAmount>19.95</paymentAmount>
<paymentMethod>CREDITCARD</paymentMethod>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Testing RecurPay

To test the RecurPay process, it is advisable to first call the CREATE_RECURPAY_CUSTOMER command, with
4242424242424242 creditCardNumber and test=TRUE and then test subsequent updates and cancels on the
previously created customer.

During a RecurPay customer creation, the credit card number is validated using the same process that one-time
payments use during testing. Thus to get an approved created RecurPay plan, please use the testing details found
in the one-time credit card testing section.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl e}

Customer Tokenization

In addition to recurring and future dated payments, the DevConnect API also supports the use of Customer
Tokenization. This means that you will be able to post us the payment information for a customer, we will
securely store the information, and you can then process payments on demand as you see fit by simply posting us
a ‘token’ or an identifier representing that customer and by using the TRANSACT command from section 1.

Storing (or Tokenizing) a Customer

Request Fields

Listed below are the required and optional fields that should be sent to the API for creating a customer payment
record in our system.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required

command CREATE_TOKENIZED_CUSTOMER 32 CHARs Required

test Either TRUE or not. Anything other 8 CHARs Optional — flags to the
than TRUE is interpreted as a system if this is a test
production item. transaction or not

customerAccountNumber The merchant generated unique 32 CHARs Required — this is used
customer account number to to identify the customer
identify this customer. throughout the system

and in UPDATE and

** This will be the ‘token’ or CANCEL commands

‘identifier’ that you pass to us
later when processing **

paymentMethod CREDITCARD, DEBITCARD or ACH 32 CHARs Required

paymentSubMethod One of the following: Visa, 16 CHARs Required
MasterCard, Amex, Discover,
Pinless Debit, Checking, Savings,
Business, Unknown

creditCardNumber The customer’s credit card number 16 CHARs Required for
paymentMethod =
CREDITCARD

debitCardNumber The customer’s debit card number 16 CHARs Required for
paymentMethod =
DEBITCARD

expireMonth The customer’s card expiration 2 CHARs Required for

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API n

expireYear

cvvCode

bankRoutingNumber

bankAccountNumber

billFirstName

billLastName

billCompany

billAddress

billCity
billState

billZip

billPhone

billEmail

Response Fields

month

The customer’s card expiration
year

The cvv2 also known as security
code from the back of the card

The 9 digit Bank Routing Number
in the case of ACH payments

The 4-17 digit Bank Account
Number in the case of ACH
payments

The customer’s first name
The customer’s last name

If the customer is a company and

not an individual, you can send the

company name here

The customer’s house number and

street, ex: 123 Test St

The customer’s city, ex: Springfield

The two digit state abbreviation

The 5-10 digit zip code for the
customer

The customer’s 10 digit phone
number

The customer’s email address

4 CHARs

3-4 CHARs

12 CHARs

17 CHARs

25 CHARs

25 CHARs

50 CHARs

50 CHARs

25 CHARs

2 CHARs

10 CHARs

10 CHARs

50 CHARs

paymentMethod =
CREDITCARD or
DEBITCARD

Required for
paymentMethod =
CREDITCARD or
DEBITCARD

Optional, but highly
recommended. Used
for CREDITCARD
paymentMethod.

Required

Optional — will be added
to the paymentAmount
before processing

Required
Required

Optional. This can be
used instead of the
billFirstName
billLastName but at least
one or the other is
required

Required

Required
Required

Optional but highly
recommended

Optional

Optional

The following response fields are what you may expect from an attempt to create a tokenized customer.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Field Value Type Notes

command The original ‘command’ this 32 CHARs Echoed from request —
response is referring to. This is the command that
was attempted

commandResponseCode The response to attempting 1 NUM This is the overall response
the ‘command’ 1 for to the ‘command’ field.
successful, 2 for declined, 3 Do not confuse this with
for error the
paymentResponseCode
commandResponseText The text describing the 120 CHARs A description of the
commandResponseCode declined message or error

that occurred by
attempting to process the
request ‘command’.

customerAccountNumber Echoed from the original 32 CHARs This is the unique
request identifier for this
customer. The merchant
sends this in during the
request to create the

customer
paymentMethod An echo of the 32 CHARs This varies by type of
paymentMethod sent in operation you are
the request processing

Example SOAP Request
The following illustrates an example SOAP request to store a tokenized customer in the system.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:test>TRUE</proc:test>
<proc:command>CREATE_TOKENIZED CUSTOMER</proc:command>
<proc:customerAccountNumber>123456789012</proc:customerAccountNumber>
<proc:paymentMethod>CREDITCARD</proc:paymentMethod>
<proc:paymentSubMethod>Visa</proc:paymentSubMethod>
<proc:creditCardNumber>4242424242424242</proc:creditCardNumber>
<proc:expireMonth>01</proc:expireMonth>
<proc:expireYear>2014</proc:expireYear>
<proc:cvvCode>123</proc:cvvCode>
<proc:billFirstName>Jonathan</proc:billFirstName>
<proc:billLastName>Doe</proc:billLastName>
<proc:billAddress>123 test st</proc:billAddress>
<proc:billCity>testville</proc:billCity>
<proc:billzip>90210</proc:billzip>
<proc:billState>CA</proc:billState>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API s}

<proc:billPhone>555-666-7777</proc:billPhone>
<proc:billEmail>jdoe@Rexample.com</proc:billEmail>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<COmmand>CREATE_TOKENIZED_CUSTOMER</Command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully Created Tokenized Customer.
</commandResponseText>
<customerAccountNumber>123456789012</customerAccountNumber>
<paymentMethod>CREDITCARD</paymentMethod>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

*Note: Customers are identified by the ‘customerAccountNumber’ field. Subsequent transaction attempts,
customer updates and customer cancels must use the ‘customerAccountNumber’ field to identify the customer.
Updating a Tokenized Customer

Request Fields

Listed below are the required and recommended fields that should be sent to the API for updating a customer.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required

command UPDATE_TOKENIZED_CUSTOMER 32 CHARs Required

test Either TRUE or not. Anything thatis 8 CHARs Optional — flags to the
sent other than TRUE is interpreted system if this is a test
as a non-test transaction. transaction or not

customerAccountNumber The merchant generated unique 32 CHARs Required — this is used
customer account number to to identify the
identify this customer customer. It was

previously sent during a
CREATE call.

* The fields below are all optional and just an example of which fields you may wish to update.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl [t

paymentMethod

paymentSubMethod

creditCardNumber

expireMonth

expireYear

cvvCode

Response Fields

CREDITCARD (for example) Canalso 32 CHARs
be DEBITCARD or ACH

One of the following: Visa, 16 CHARs
MasterCard, Amex, Discover, Pinless

Debit, Checking, Savings, Business,

Unknown

The customer’s new credit card 16 CHARs
number

The customer’s new card expiration 2 CHARs
month

The customer’s new card expiration 4 CHARs

year

The new cvv2 also known as security 4 CHARs
code from the back of the card

Optional in this situation

Optional in this situation

Optional in this situation

Optional in this situation

Optional in this situation

Optional in this situation

The following response fields are what you may expect from an attempt to UPDATE a Customer.

Field

command

commandResponseCode

commandResponseText

customerAccountNumber

paymentMethod

Value Type

The original ‘command’ this 32 CHARs
response is referring to.

The response to attempting 1 NUM
the ‘command’ 1 for

successful, 2 for declined, 3

for error

The text describing the 120 CHARs
commandResponseCode

Echoed from the original 32 CHARs
request

An echo of the 32 CHARs

paymentMethod sent in

Notes

Echoed from request —
This is the command that
was attempted

This is the overall response
to the ‘command’ field.

Do not confuse this with
the
paymentResponseCode

A description of the
declined message or error
that occurred by
attempting to process the
request ‘command’.

This is the unique
identifier for this
customer. The merchant
sends this in during the
original request to create
the customer record

This varies by type of
operation you are

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API n

the request originally when processing
the record was created

Example SOAP Request
The following shows an example SOAP request to update a customer’s credit card in the system.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:test>TRUE</proc:test>
<proc:command>UPDATE TOKENIZED CUSTOMER</proc:command>
<proc:customerAccountNumber>123456789012</proc:customerAccountNumber>
<proc:paymentMethod>CREDITCARD</proc:paymentMethod>
<proc:paymentSubMethod>MasterCard</proc:paymentSubMethod>
<proc:creditCardNumber>5454545454545454</proc:creditCardNumber>
<proc:expireMonth>01</proc:expireMonth>
<proc:expireYear>2015</proc:expireYear>
<proc:cvvCode>123</proc:cvvCode>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<COmmand>UPDATE_TOKENI ZED_CUSTOMER</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully Updated Tokenized Customer.
</commandResponseText>
<customerAccountNumber>123456789012</customerAccountNumber>
<paymentMethod>CREDITCARD</paymentMethod>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Cancelling a Tokenized Customer

Request Fields

Listed below are the fields that should be sent to the API for cancelling or removing a customer from storage.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl e

Field
merchantCode
command

test

customerAccountNumber

Response Fields

Value
Assigned to you by Regal
CANCEL_TOKENIZED_CUSTOMER

Either TRUE or not. Anything that is
sent other than TRUE is interpreted
as a non-test transaction.

The merchant generated unique
customer account number to
identify this customer

Type
49 CHARs
32 CHARs

8 CHARs

32 CHARs

Notes
Required
Required

Optional — flags to the system if
this is a test transaction or not

Required — this is used to
identify the customer. It was
previously sent during a CREATE
call.

The following response fields are what you may expect from an attempt to cancel a customer.

Field

command

commandResponseCode

commandResponseText

customerAccountNumber

paymentMethod

Value

The original ‘command’ this
response is referring to.

The response to attempting
the ‘command’ 1 for
successful, 2 for declined, 3
for error

The text describing the
commandResponseCode

Echoed from the original
request

An echo of the
paymentMethod sent in
the request originally when
the record was created

Type

32 CHARs

1NUM

120 CHARs

32 CHARs

32 CHARs

Notes

Echoed from request —
This is the command that
was attempted

This is the overall response
to the ‘command’ field.

Do not confuse this with
paymentResponseCode

A description of the
declined message or error
that occurred by
attempting to process the
request ‘command’.

This is the unique
identifier for this
customer. The merchant
sends this in during the
original request to create
the customer record

This varies by type of
operation you are
processing

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API n

Example SOAP Request
The following shows an example SOAP request to cancel or remove a customer’s record from the system.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">
<soapenv:Header/>
<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:test>TRUE</proc:test>
<proc:command>CANCEL_TOKENIZED_CUSTOMER</proc:command>
<proc:customerAccountNumber>123456789012</proc:customerAccountNumber>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>CANCEL TOKENIZED CUSTOMER</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully Canceled Tokenized Customer.
</commandResponseText>
<customerAccountNumber>123456789012</customerAccountNumber>
<paymentMethod>CREDITCARD</paymentMethod>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Performing Transactions on Stored Customers

Request Fields

Listed below are the fields that should be sent to the API for performing a transaction on a previously stored (and
thus tokenized) Customer. This is very similar to the regular TRANSACT command for regular customers,
except that you need to pass the customerAccountNumber and you do not need to pass any of the
customers payment information.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API [Weyj

command

test

customerAccountNumber

useTokenization

paymentAmount

serviceFee

Response Fields

TRANSACT

Either TRUE or not. Anything that is
sent other than TRUE is interpreted
as a non-test transaction.

The previously stored customer’s
account number. This will allow us
to pull up and use all the other
details needed to perform a
transaction.

This indicates that you intend to do
a tokenization transaction. This
must be set to TRUE.

The amount to charge, ex: 1.01

An additional service fee to charge
if you like, ex: 0.25

32 CHARs

8 CHARs

32 CHARs

6 CHARs

12 CHARs

12 CHARs

Required

Optional — flags to the
system if this is a test
transaction or not

Required — this is used
to identify the customer.
It was previously sent
during a CREATE call.

Required and must be
set to TRUE.

Required

Optional — will be added
to the paymentAmount
before processing

The following response fields are what you may expect from an attempt to process a payment on a previously

stored customer.

Field

command

commandResponseCode

commandResponseText

paymentMethod

Value Type

The original request
command this response
is referring to.

The response to
attempting the
‘command’ 1 for
successful, 2 for declined,
3 for error

The text describing the
commandResponseCode

An echo of the
paymentMethod that
was used for the

1NUM

32 CHARs

120 CHARs

32 CHARs

Notes

Echoed from request —
This is the command that
was attempted

This is the overall
response to the request
‘command’ field. Do not
confuse this with the
paymentResponseCode

A description of the
declined message or error
that occurred by
attempting to process the
request ‘command’.

This depends on what was
previously stored in the
customer record

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API u

paymentAmount

paymentResponseCode

paymentResponseText

paymentTransactionID

approvalCode

trackingNumber

Example SOAP Request

payment

The amount attempted 12 CHARs
to charge. Ex: 1.01

The payment ‘response 1 NUM
code’ returned from the
transaction. In general

it’s 1 for successful, 2 for

declined, 3 for error

The ‘response text’ 120 CHARs
returned from
attempting a transaction

The transaction ID as 16 CHARs
provided by the back end
gateway or processor.

The 5-6 digit approval 6 CHARs
code returned from the

back end gateway or

processor.

The RegalTek unique 16 CHARs
tracking number for the
transaction.

This is echoed from the
request

This is the value that
indicates if a transaction
was approved or declined

The description of the
paymentResponseCode.
This will likely be
‘Transaction Inserted
Successfully’ or just
‘Success’.

This is a unique ID with a 1
to 1 relationship per
transaction attempt.

This is not unique but is
issued and may be used to
verify payment with the
processor

This is a unique ID with a 1
to 1 relationship per
transaction attempt.

The following is an example raw SOAP request for an attempt to perform a credit card payment on a previously

stored customer. Please use the built in or third party SOAP libraries for your programming language to post

payments. The following is only for illustration and troubleshooting purposes only.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:proc="http://processor">

<soapenv:Header/>
<soapenv:Body>

<proc:processCommand>
<proc:test>TRUE</proc:test>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>TRANSACT</proc:command>
<proc:customerAccountNumber>123456789012</proc:customerAccountNumber>

<proc:useTokenization>TRUE</proc:useTokenization>
<proc:paymentAmount>1.01</proc:paymentAmount>
<proc:serviceFee></proc:serviceFee>

</proc:processCommand>

</soapenv:Body>
</soapenv:Envelope>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

instance">

<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<approvalCode>000000</approvalCode>
<command>TRANSACT</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully processed transaction.
</commandResponseText>
<paymentMethod>CREDITCARD</paymentMethod>
<paymentAmount>1.01</paymentAmount>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText> (TESTMODE) This transaction has been approved.
</paymentResponseText>
<paymentTransactionID>0</paymentTransactionID>
<trackingNumber>1280892202844</trackingNumber>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Testing Tokenization

To test the Customer Tokenization process, it is necessary to first call the CREATE_TOKENIZED_CUSTOMER
command, with the 4242424242424242 creditCardNumber and test=TRUE and then test subsequent transactions,
updates and cancels on the previously created customer.

During a customer creation, the credit card number is validated using the same process that one-time payments
use during testing. Thus to get an approved stored customer, please use the testing details found in the one-time
credit card testing section.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl [ylj]

Querying and Reporting

Querying Transactions

The API provides the ability for a merchant to query for previously posted transactions based on the unique
trackingNumber or on any of the other request fields.

Retrieving a Single Transaction

Request Fields

To retrieve a single status update of a single transaction, the most straightforward query is to do a lookup by
trackingNumber. Listed below are the fields that should be sent to the API for this type of query.

Field Value Type Notes

merchantCode Assigned to you by Regal 49 CHARs Required

command QUERY 32 CHARs Required

trackingNumber The unique number for this 16 CHARs Required for this type of query

transaction, generated by Regal and
previously returned to the client.

Response Fields

The following response fields are what you may expect from a request to query a single transaction.

Field Value Type Notes

command The original ‘command’ 32 CHARs Echoed from request — This is the
this response is referring command that was attempted
to.

commandResponseCode The response to 1NUM This is the overall response to the
attempting the ‘command’ ‘command’ field. Do not confuse this
1 for successful, 2 for with the paymentResponseCode

declined, 3 for error

commandResponseText The text describing the 120 CHARs A description of the declined
commandResponseCode message or error that occurred by
attempting to process the request
‘command’

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

paymentMethod An echo of the 32 CHARs This varies by type of operation you
paymentMethod sent in are processing
the request originally when
the plan was created

customerAccountNumber The customer account 32 CHARs This is posted by the merchant at the
number for this payment time the payment is created
approvalCode The 5-6 digit processor 6 CHARs This is returned by the processor for
approval code for credit approved payments
card or debit card
payments
trackingNumber Echoed from the request 16 CHARs This is a unique ID withal1to 1
relationship per transaction attempt.
paymentResponseCode The payment ‘response 1 NUM This is the value that indicates
code’ returned from the whether the last payment action was
transaction. In general it’s successful or not

1 for successful, 2 for
declined, 3 for error

paymentResponseText The current ‘response text” 120 CHARs The description of the
for the payment which paymentResponseCode. This will be
describes the response a clearer description of the state of
code the payment

paymentTransactionID The processor transaction 16 CHARs Issued on approvals and some types
id if present of declines as well

paymentAmount The amount of the 12 CHARs This was submitted during the
payment original payment post to us

serviceFee The service fee of the 12 CHARs This was submitted during the
payment original payment post to us

status This can be ‘Authorized’ 16 CHARs A single word describing the ‘status’
‘FailedProcessing’, of the payment in the system. This
‘Retrying’, ‘Paid’, is useful to see if a payment is being
‘Refunded’, ‘Voided’, qgueued for re-processing due to a
‘Cancelled’, ‘Future’, processor failure (Retrying), or to
‘Declined’, ‘Returned’, see if a payment has been settled
‘Unknown’ (Paid) vs. unsettled (Authorized).

Example SOAP Request
The following shows an example SOAP request to query for a single transaction in the system.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">

<soapenv:Body>

<soapenv:Header/>
Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>QUERY</proc:command>
<proc:trackingNumber>1280892202845</proc:trackingNumber>

</proc:processCommand>

</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response
And here is an example of a raw SOAP response you might expect to receive from the request shown above.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-

instance">

<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>QUERY</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully queried transaction.</commandResponseText>
<paymentMethod>CREDITCARD</paymentMethod>
<customerAccountNumber>555544433</customerAccountNumber>
<approvalCode>000000</approvalCode>
<trackingNumber>1280892202845</trackingNumber>
<paymentResponseCode>1</paymentResponseCode>
<paymentResponseText> (TESTMODE) This transaction has been approved.
</paymentResponseText>
<paymentTransactionID>0</paymentTransactionID>
<paymentAmount>1.01</paymentAmount>
<serviceFee>0.00</serviceFee>
<status>Authorized</status>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Retrieving a Group of Transactions

Request Fields

To retrieve a group of transactions, such as all payments for a specific day, or all declined debit cards for the week,
there please use the following fields.

Field Value Type Notes
merchantCode Assigned to you by Regal 49 CHARs Required
command QUERY 32 CHARs Required

* Note the remaining fields below are all optional based on what type of payments you are searching for.

fromDate A date/time in the format of YYYY- 19 CHARs Optional — this is the From date

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API [yt

toDate

trackingNumber

paymentMethod

paymentSubMethod

paymentAmount

creditCardToken

status

MM-DD hh:mm:ss

A date/time in the format of YYYY-
MM-DD hh:mm:ss

The unique number for this
transaction, generated by Regal and
previously returned to the client.

Can be one of ‘CREDITCARD’,
‘DEBITCARD’, ‘ACH’, ‘WIRE’

Can be one of ‘Checking’, ‘Savings’,
‘Business’, ‘Pinless Debit’, ‘Visa’,
‘MasterCard’, ‘Amex’, ‘Discover’,
‘Unknown’

The amount of the payment ex: 1.01

The tokenized number sent in for a
credit card payment (USAePay Only)

The status of the payment (see
Appendix for ‘Payment Statuses’)

19 CHARs

16 CHARs

16 CHARs

16 CHARs

12 CHARs

32 CHARs

16 CHARs

for the query

Optional — this is the To date for
the query

Optional

Optional

Optional

Optional

Optional

Optional

* Or any other appropriate request field from Appendix B can be submitted to the query

Response Fields

The following response fields are what you may expect from a request to query a group of transactions. Note that

for this type of query (where several transactions are returned), the results will be wrapped in <transaction> tags

to show the separation between results.

Field

command

commandResponseCode

commandResponseText

paymentMethod

Value Type

The original ‘command’ 32 CHARs
this response is referring

to.

The response to 1NUM
attempting the ‘command’

1 for successful, 2 for

declined, 3 for error

The text describing the 120 CHARs
commandResponseCode

An echo of the 32 CHARs

Notes

Echoed from request — This is the

command that was attempted

This is the overall response to the

‘command’ field. Do not confuse this

with the paymentResponseCode

A description of the declined

message or error that occurred by

attempting to process the request

‘command’

This varies by type of operation you

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

paymentMethod sent in are processing
the request originally when
the plan was created

customerAccountNumber The customer account 32 CHARs This is posted by the merchant at the
number for this payment time the payment is created

approvalCode The 5-6 digit processor 6 CHARs This is returned by the processor for
approval code for credit approved payments

card or debit card

payments
trackingNumber Echoed from the request 16 CHARs This is a unique ID withal1to 1
relationship per transaction attempt.
paymentResponseCode The payment ‘response 1 NUM This is the value that indicates
code’ returned from the whether the last payment action was
transaction. In general it’s successful or not

1 for successful, 2 for
declined, 3 for error

paymentResponseText The current ‘response text” 120 CHARs The description of the
for the payment which paymentResponseCode. This will be
describes the response a clearer description of the state of
code the payment

paymentTransactionID The processor transaction 16 CHARs Issued on approvals and some types
id if present of declines as well

paymentAmount The amount of the 12 CHARs This was submitted during the
payment original payment post to us

serviceFee The service fee of the 12 CHARs This was submitted during the
payment original payment post to us

status This can be ‘Authorized’ 16 CHARs A single word describing the ‘status’
‘FailedProcessing’, of the payment in the system. This
‘Retrying’, ‘Paid’, is useful to see if a payment is being
‘Refunded’, ‘Voided’, queued for re-processing due to a
‘Cancelled’, ‘Future’, processor failure (Retrying), or to
‘Declined’, ‘Returned’, see if a payment has been settled
‘Unknown’ (Paid) vs. unsettled (Authorized).

Example SOAP Request

The following shows an example SOAP request to query for all declined CREDITCARD payments between 1pm and
2pm on New Years Day 2012.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:proc="http://processor">

<soapenv:Header/>
Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

<soapenv:Body>
<proc:processCommand>
<proc:merchantCode>K3L45JL3K45J34KL435JJLK45JLK345JLK543LKJ543JLKUIT
</proc:merchantCode>
<proc:command>QUERY</proc:command>
<proc:paymentMethod>CREDITCARD</proc:paymentMethod>
<proc:fromDate>2012-01-01 13:00:00</proc:frombDate>
<proc:toDate>2012-01-01 14:00:00</proc:toDate>
<proc:status>Declined</proc:status>
</proc:processCommand>
</soapenv:Body>
</soapenv:Envelope>

Example SOAP Response

And here is an example of a raw SOAP response you might expect to receive from the request shown above. Notice
the results came back as a list wrapped in <transaction> tags.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<soapenv:Body>
<processCommandResponse xmlns="http://processor">
<processCommandReturn>
<command>QUERY</command>
<commandResponseCode>1</commandResponseCode>
<commandResponseText>Successfully queried transaction.</commandResponseText>
<transaction>
<paymentDate>2012-01-01 13:05:02</paymentDate>
<paymentMethod>CREDITCARD</paymentMethod>
<paymentSubMethod>Visa</paymentSubMethod>
<customerAccountNumber>555544433</customerAccountNumber>
<trackingNumber>1280892202845</trackingNumber>
<paymentResponseCode>2</paymentResponseCode>
<paymentResponseText>This transaction is declined.</paymentResponseText>
<paymentTransactionID>0</paymentTransactionID>
<paymentAmount>1.01</paymentAmount>
<serviceFee>0.00</serviceFee>
<status>Declined</status>
</transaction>
<transaction>
<paymentDate>2012-01-01 13:34:28</paymentDate>
<paymentMethod>CREDITCARD</paymentMethod>
<paymentSubMethod>MasterCard</paymentSubMethod>
<customerAccountNumber>123456</customerAccountNumber>
<trackingNumber>1280892202765</trackingNumber>
<paymentResponseCode>2</paymentResponseCode>
<paymentResponseText>This card has expired.</paymentResponseText>
<paymentTransactionID>0</paymentTransactionID>
<paymentAmount>2.02</paymentAmount>
<serviceFee>0.00</serviceFee>
<status>Declined</status>
</transaction>
<transaction>
<paymentDate>2012-01-01 13:51:29</paymentDate>
<paymentMethod>CREDITCARD</paymentMethod>
<paymentSubMethod>Amex</paymentSubMethod>
<customerAccountNumber>44400</customerAccountNumber>
<trackingNumber>1280892203287</trackingNumber>
<paymentResponseCode>2</paymentResponseCode>
<paymentResponseText>Invalid card number.</paymentResponseText>
<paymentTransactionID>0</paymentTransactionID>
<paymentAmount>3.03</paymentAmount>
<serviceFee>0.00</serviceFee>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect APl [yl

<status>Declined</status>
</transaction>
</processCommandReturn>
</processCommandResponse>
</soapenv:Body>
</soapenv:Envelope>

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API [y

Integrating with SOAP

SOAP (Simple Object Access Protocol) is a web services standard protocol that is compatible and convenient for all
programming languages to access. Thus every modern web enabled programming language has either built in or
readily available libraries and example code you can find online for integrating your software with a SOAP web
service. The following is a helpful list of libraries and source code that may help you integrate with SOAP services if
they are new to you or you need assistance.

.NET Languages

Adding a SOAP Web Service client to a Microsoft project using Visual Studio (.NET languages):

http://msdn.microsoft.com/en-us/library/tydxdyw9.aspx

MSDN class documentation to serialize a .NET data object into SOAP format (examples given in VB, C#, C++, F# and
Jscript):

http://msdn.microsoft.com/en-us/library/system.runtime.serialization.formatters.soap.soapformatter.aspx

Java / Sun

Examples and explanations of building SOAP clients in JAVA:

http://java.sun.com/developer/technicalArticles/WebServices/SOAP/

PHP

Coding SOAP clients using PHP:

http://php.net/manual/en/book.soap.php

PERL

Using SOAP with PERL:

http://users.skynet.be/pascalbotte/rcx-ws-doc/soaplite.htm

Python

How to build SOAP clients in PYTHON:

http://users.skynet.be/pascalbotte/rcx-ws-doc/python.htm

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Additional Resources

Additionally, there are several standalone programs that allow to you interface directly with a SOAP APl from your
desktop and view the SOAP envelope as well as the raw data getting passed back and forth. One that comes in

handy when debugging and testing manually against a SOAP web service is called soapUl by Eviware. It's
completely free and can be downloaded here:

http://www.eviware.com/soapUl/soapui-products-overview.html

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Appendices

Appendix A - Command Reference
The following is a list of possible ‘command’ values that can be sent in to the APl and a brief description
of what each one is used for. They are listed in alphabetical order.

Value Description

CANCEL_RECURPAY_CUSTOMER This is used to deactivate a recurring payment plan from the
system.

CREATE_RECURPAY_CUSTOMER This is used to insert a recurring payment plan (payments
occurring on a repeating basis) into the system for processing.

QUERY This is used to pull transaction information or updated details for
several transactions based on search parameters you choose.

REFUND This is used to reverse, i.e. credit, a previously posted payment
that has already settled.

SETTLE_BATCH This is used to manually settle an ACH batch of payments.

TRANSACT This is used to insert a payment, wire transfer, or future payment
for processing.

UPDATE This is used to update or modify an ACH payment before it has
settled, or it can also modify a Future payment (of any type)
before it gets processed.

UPDATE_RECURPAY_CUSTOMER This is used to update or modify the details of a customer’s active
recurring payment plan.

VOID This is used to stop a payment before it is settled. In the case of
Authorized payments (real time payments that have occurred
recently), it changes their status to Voided. In the case of Future
based payments, it changes their status to Cancelled.

Appendix B - Request Fields in Alphabetical Order

Following is a list of all Request Fields that can be submitted to the APl and a brief description of each.

Field Type Description

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API m

bankAccountNumber 17 CHARs The customer’s bank account number in cases of ACH or WIRE

bankRoutingNumber 9 CHARs The customer’s bank ABA number for ACH or WIRE
payments

billAddress 50 CHARs The customer’s street address

billCity 25 CHARs The customer’s city

billCompany 50 CHARs The company to charge. Can be used instead of

billFirstName and billLastName.

Note for ACH and WIRE transactions: The processor has a 35
character limit on this value. We will continue to store the full
value you send, but on the processor end, it will be cut off if it’s
longer than 35 characters.

billCountry 25 CHARs The customer’s country
billDriversLicense 16 CHARs The customer’s drivers license number
billDriversLicenseState 2 CHARs The customer’s drivers license state
billEmail 50 CHARs The customer’s email address
billFirstName 25 CHARs The customer’s first name

Note for ACH and WIRE transactions: The billFirstName and
billLastName get combined together to form a full name. The
processor has a 35 character limit on this full name. We will
continue to store the full values you send, but on the processor
end, it will be cut off if it’s longer than 35 characters.

billLastName 25 CHARs The customer’s last name
Note for ACH and WIRE transactions: The billFirstName and
billLastName get combined together to form a full name. The
processor has a 35 character limit on this full name. We will
continue to store the full values you send, but on the processor
end, it will be cut off if it’s longer than 35 characters.

billPhone 10 CHARs The customer’s phone number

billState 2 CHARs The customer’s US state abbreviation

billZip 10 CHARs The customer’s 5-10 digit zip code

branchNumber 6 CHARs The merchant company’s branch number if segregated into
branches

checkDate 10 CHARs The date to clear the check (on the ACH processor side). We

recommend using ‘paymentDate’ instead as it applies to all
transactions and gives more control

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

command

creditCardNumber

creditCardToken

customerAccountNumber

cvvCode
debitCardNumber

debitCardToken

description

expireMonth
expireYear

fromDate

insertType

invoiceNumber

merchantCode

numberOfPayments
paymentAmount

paymentChannel

16 CHARs

16 CHARs

32 CHARs

16 CHARs

4 CHARs

16 CHARs

32 CHARs

120 CHARs

2 CHARs

4 CHARs

19 CHARs

3 CHARs

16 CHARs

49 CHARs

6 CHARs

12 CHARs

3 CHARs

The ‘command’ or operation you are trying to accomplish
with a post to the API

The 15-16 digit credit card number, no spaces or dashes, just
straight numbers

The 16-19 digit USAePay credit card token (USAePay
customers only)

The customer’s account or company file number at the
merchant company. This should be unique, but isn’t
required to be.

The 3-4 digit security code from the customer’s credit card
The customer’s debit card number

The 16-19 digit USAePay debit card token (USAePay
customers only)

A description of the payment. Recommended especially for
WIRE payments

The credit card or debit card expiration month
The credit card or debit card expiration year

The date to begin searching from in case of a ‘QUERY’
command

The type of ACH transaction to insert for ACH transactions.
Can be WEB, TEL, RTP, etc.

The merchant’s invoice or receipt number for this payment.
Not required, it’s for convenience only to assist the
merchant in tracking the order

The Regal issue encryption key to identify a merchant to the
API

The number of payments remaining on a RecurPay plan
The payment amount to process

The payment channel, i.e. the mechanism that the payment
came in by. Can be WEB (for customer initiated online
payments), IVR (for automated phone payments), CSR (for
representative initiated online payments), MOB (for mobile
phone payments)

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

paymentDate

paymentMethod

paymentSubMethod

paymentTransactionID

recurringAmount

recurringDateOfMonth1

recurringDateOfMonth2

recurringFrequency

recurringStartDate

recurringWeekDay

serviceFee

shipAddress

shipCity
shipCompany
shipCountry
shipEmail
shipFirstName

shipLastName

10 CHARs

16 CHARs

16 CHARs

16 CHARs

12 CHARs

2 CHARs

2 CHARs

1 CHARs

10 CHARs

2 CHARs

12 CHARs

50 CHARs

25 CHARs

50 CHARs

25 CHARs

50 CHARs

25 CHARs

25 CHARs

The date the transaction was processed on, or should be
processed on in cases of Future payments

The overall type of payment that was used. Can be
CREDITCARD, DEBITCARD, ACH or WIRE

The sub-type of the paymentMethod. Can be Visa,
MasterCard, Amex, Discover, Pinless Debit, Checking,
Savings, Business or Unknown

The processor-issued transaction id after a payment has
been sent for processing

The amount to charge on a recurring basis in a RecurPay plan

The 2 digit date of month to process monthly or twice-
monthly RecurPay plans

The second 2 digit date of month to process twice-monthly
RecurPay plans

The frequency on which to charge the customer. Can be M
(for monthly), T (for twice-monthly), B (for bi-weekly) or W
(for weekly)

The date on which to activate or begin the plan

The 2 digit week day to process weekly or bi-weekly
RecurPay plans

A service fee that the merchant may be charging to the
customer for this payment. It gets added to the
paymentAmount and the sum total of these two fields is
what gets charged.

The customer’s shipping address in cases of physical
products

The customer’s shipping city

The customer’s shipping company

The customer’s shipping country

The customer’s shipping email

The customer’s shipping name in cases of a gift or third party

The customer’s shipping last name

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

shipPhone 10 CHARs The customer’s shipping phone number

shipState 2 CHARs The customer’s shipping US State abbreviation
shipZip 10 CHARs The customer’s shipping zip code
status 16 CHARs The current state of a payment. Can be one of Authorized,

Declined, Voided, Cancelled, Future, Paid, Refunded,
Retrying, Returned, FailedProcessing, Unknown (See
‘Payment Statuses’ in Appendix)

test 8 CHARs Indicator if the request should be treated as a test or not.
Can be ‘TRUE’ or anything else (anything other than ‘TRUE’ is
interpreted as a non-test payment)

toDate 19 CHARs The date to search until in cases of a QUERY command
trackingNumber 16 CHARs The unique identifier for a payment
transactionType 16 CHARs In cases of ACH payments, this is used to indicate that a

CREDIT type of operation is desired. If not present in the
request, DEBIT is assumed.

Appendix C - Response Fields in Alphabetical Order

Below are the possible response fields that can be returned by the API. They are listed in alphabetical
order for your reference.

Field Type Description

approvalCode 6 CHARs The 5-6 digit approval code as issued by the processor for
authorized credit card or debit card payments

command 16 CHARs The ‘command’ value from the request, echoed back for clarity

commandResponseCode 1 CHARs The response of whether the overall ‘command’ operation was
received and attempted. Can be 1 for successful, 2 for declined
or 3 for error

commandResponseText 32 CHARs The response text detailing the reason for the
commandResponseCode above

customerAccountNumber 16 CHARs The customer’s account number as entered by the merchant
paymentAmount 12 CHARs The amount of the payment
paymentDate 19 CHARs The date the payment has been or will be processed

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API "

paymentMethod

paymentResponseCode

paymentResponseText

paymentSubMethod

paymentTransactionID

serviceFee

status

trackingNumber

transactionType

Appendix D - Payment Statuses

16 CHARs

1 CHARs

256 CHARs

16 CHARs

16 CHARs

12 CHARs

16 CHARs

16 CHARs

16 CHARs

The type of payment, can be ACH, CREDITCARD, DEBITCARD or
WIRE

The code indicating approval or denial of payment type
operations. Can be 1 for approved, 2 for declined or 3 for error.
See examples under the processing sections

The response text describing the reason for the
paymentResponseCode

The sub-type of payment. Can be ‘Visa’, ‘MasterCard’, ‘Amex’,
‘Discover’, ‘Pinless Debit’, ‘Checking’, ‘Savings’, ‘Business’ or
‘Unknown’

The transaction id as issued by the processor

An echo of the service fee that the merchant sent in. For clarity.
It is added to the payment amount at time of processing

The current state of a payment. Can be one of Authorized,
Declined, Voided, Cancelled, Future, Paid, Refunded,
Retrying, Returned, FailedProcessing, Unknown (See
‘Payment Statuses’ in Appendix)

The unique Regal transaction identification number. All
transactions will be issued one of these.

In the case this is a credit type operation this will say CREDIT

The following is a list of possible ‘status’ values to be used in querying and to be observed in the

responses for other types of commands. They are what we use internally to track the current state of

payments and in general they sum up what has happened with a payment. They are the ‘values’ to the

field named ‘status’ (see Request Fields or Response Fields in appendices above).

Value Description

The payment has recently been posted for approval and is approved. It has not

Authorized

Voided

yet settled, i.e. it is in an open batch and at the end of the day will change to

‘Paid’.

This payment was authorized earlier in the day, but has since been ‘Voided' i.e.,

removed from the batch so that it will not settle nor charge the customer’s

credit card or bank account.

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

Paid The payment is in a settled status and funds have been transferred or are en-
route to being transferred.

Refunded This payment was in a ‘Paid’ status but the merchant has decided to reverse the
payment and return the funds back to the customer, thus the payment
becomes ‘Refunded’.

Future This payment has not yet processed. When it’s ‘paymentDate’ arrives it will be
processed and will change to either an ‘Authorized’ or ‘Declined’ status.

Cancelled This payment used to be in the ‘Future’ status but has been cancelled by the
merchant and will remain in that state and not get processed on its
‘paymentDate’.

Declined The processor declined this payment.

Returned This is an ACH payment that after a period of time the ACH processor has

notified us that it was returned to the customer, such as when there are
insufficient funds, or a dispute and the customers bank decides to refund the
customer on their behalf.

FailedProcessing This status is the original status of all payments and is used internally to indicate
and catch issues and errors. We are generally notified about such types of
payments and in most cases resolve these if they occur without need of the
merchant intervening.

Retrying This status indicates there was a processor issue or timeout failure or other
issue and the payment is now queued up for resubmission. These are fairly
rare and when they do occur they usually correct themselves and correctly go
into an Authorized or Declined state within 30 minutes or so.

Unknown This status is the last, bottom of the logic tree, if all else fails, status. It exists so
that there will never be a blank status for a transaction. This status is the rarest
of all, in fact it has never occurred.

Appendix E - Configuration Requirements for API Functions

API Function Processing / Configuration Requirements

paymentMethod = WIRE The merchant must have submitted their merchant bank ABA number, bank code
and merchant bank account number to us so that we may configure these values in
the WIRE transfer module as being the originating bank that the funds will be

drawn from.
debitCardToken or These values are reserved for merchants using the USAePay tokenization system of
creditCardToken storing card numbers. To use this method of payment, the merchant needs to

provide us their ueSecurityToken so that we may configure the application on our

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API n

paymentMethod = ACH

end to successfully post these values through to USAePay.

To use real time, future date, or RecurPay ACH functionality, the merchant must
have an established Regal ACH account or provide their ACH UserID and API Token
from ATI / Affirmative for us to configure the merchant properly in our system

Copyright © Regal Technologies and E-Complish | Guide to DevConnect API

